А.Н. Рыбалев, В.П. Кривошеев, А.В. Епифанцев

ПАРАМЕТРИЧЕСКАЯ ОПТИМИЗАЦИЯ ЦИФРОВЫХ СИСТЕМ РЕГУЛИРОВАНИЯ

The article describes different approaches to parametric synthesis of single-loop digital control systems.

Цифровые АСР

Возрастание требований к качеству работы автоматических систем регулирования (АСР), увеличение объема перерабатываемой информации, усложнение объектов управления привели к тому, что средствами аналоговой техники и непрерывной автоматики нельзя решить многие практические задачи. В результате в современных АСР стали широко использовать цифровые системы [1-4],которых ЦВМ состав входят или специализированные цифровые устройства. Быстрое внедрение в технику цифровых систем объясняется тем, что по сравнению с аналоговыми они имеют значительно большие вычислительные возможности. В цифровых системах, выполненных на базе микроэлектроники, при небольших массах и габаритах можно использовать более сложные алгоритмы обработки сигналов. При этом точность реализации алгоритмов может быть весьма высокой. Важным преимуществом цифровых систем является высокая стабильность их работы. Кроме того, в цифровых системах просто осуществляется перестройка их структуры и регулировка параметров.

Параметрический синтез цифрового регулятора

Главной задачей параметрического синтеза одноконтурных ACP является определение оптимальных настроечных параметров регулятора.

Настроечные параметры цифрового регулятора можно расчитать на основе уже полученных ранее параметров аналогового регулятора для данного объекта управления, например, при помощи формулы Тастина [1, 2].

В данной работе решаются следующие задачи:

- параметрический синтез цифровой одноконтурной ACP с использованием формулы Тастина;
- построение графика линий Д-разбиения для цифрового ПИрегулятора с использованием формулы Тастина;
- поиск оптимальных настроечных параметров цифрового регулятора на линии Д-разбиения.

Ппараметрический синтез цифровой одноконтурной ACP с использованием формулы Тастина

Рассмотрим одноконтурную ACP с Пи-регулятором. Передаточная функция объекта управления:

$$W_o(s) = 10 \frac{1}{1 + 100s} e^{-5s} \,. \tag{1}$$

Найдены параметры аналогового регулятора для данной системы, обеспечивающие заданное значение степени колебательности m=0,221 на частоте $\omega=0,234$ (1/ед.вр.):

$$c_0 = 0,13419 (1/ед. вр.);$$
 (2)

$$c_1 = 1,62167.$$
 (3)

Передаточная функция аналогового регулятора имеет следующий вид:

$$R(s) = \frac{0,13419 + 1,62167s}{s} \,. \tag{4}$$

На рисунке 1 изображен переходный процесс рассматриваемой АСР.

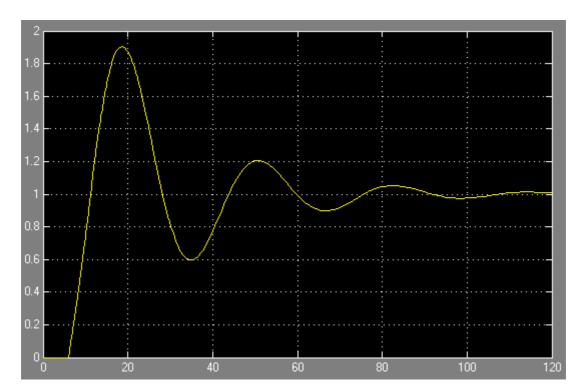


Рис. 1. Переходный процесс аналоговой одноконтурной АСР.

Для получения передаточной функции цифрового регулятора произведем замену по формуле Тастина:

$$s = \frac{2(z-1)}{T(z+1)} \,. \tag{5}$$

Передаточная функция цифрового ПИ-регулятора имеет вид:

$$R(z) = \frac{q_0 z + q_1}{z - 1},\tag{6}$$

где:

$$q_0 = \frac{c_0 T + 2c_1}{2}; (7)$$

$$q_1 = \frac{c_0 T - 2c_1}{2} \,. \tag{8}$$

При шаге квантования по времени T = 1 настроечные параметры цифрового регулятора принимают следующие значения:

$$q_0 = 1,68877$$
; (9)

$$q_1 = -1,5546. (10)$$

График переходного процесса для полученной цифровой одноконтурной ACP приведен на рисунке 2.

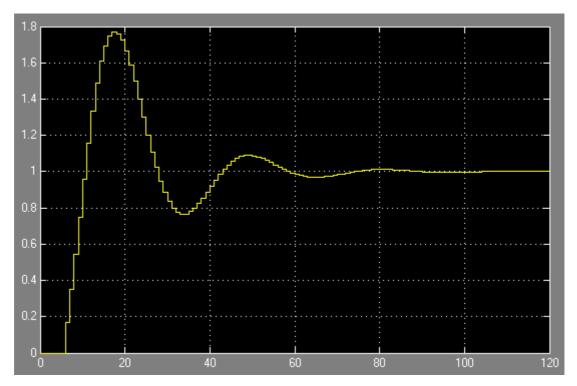


Рис. 2. Переходный процесс цифровой одноконтурной АСР.

Построение графика линий Д-разбиения для цифрового ПИ-регулятора с использованием формулы Тастина

Линия Д-разбиения для аналогового регулятора при m=0,221 в частотном диапазоне [0,019; 0,303] представлена на рисунке 3.

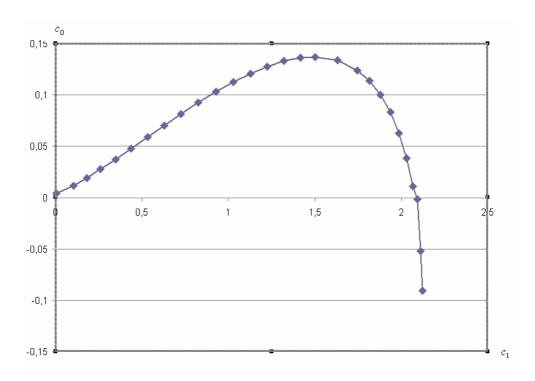


Рис. 3. Линия Д-разбиения для аналогового регулятора.

Линия Д-разбиения для цифрового регулятора, соответствующая линии Д-разбиения для аналогового регулятора приведена на рисунке 4.

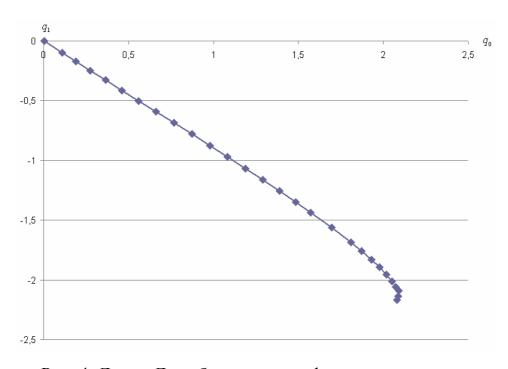


Рис. 4. Линия Д-разбиения для цифрового регулятора.

Координаты точек линии Д-разбиения для цифрового регулятора q_0 и q_1 получены из координат соответствующих им точек линии Д-разбиения для аналогового регулятора c_0 и c_1 по формулам (8) и (9) соответственно.

Поиск оптимальных настроечных параметров цифрового регулятора на линии Д-разбиения

Поиск оптимальных значений параметров регулятора производится минимизацией квадратичной интегральной оценки на линии Д-разбиения одномерным поиском.

В таблице 1 показана зависимость квадратичной интегральной оценки $I_{0,2}$ от параметров регулятора q_0 и q_1 .

Таблица 1. Зависимость квадратичной интегральной оценки от параметров регулятора.

ω	q_0	q_1	$I_{0,2}$
0,034	0,109845	-0,0982	68,1258
0,104	0,766945	-0,68546	20,36601
0,174	1,4843	-1,3481	14,41359
0,234	1,929685	-1,82946	9,675129
0,283	2,090802	-2,09254	6,376905
0,293	2,08589	-2,13815	1463,709

Точка с частотой $\omega = 0,283$ соответствует точке перегиба на линии Дразбиения для цифрового регулятора.

Из таблицы 1 видно, что при увеличении частоты ω до точки перегиба квадратичная интегральная оценка убывает, после точки перегиба – резко возрастает. Таким образом, настроечные параметры цифрового регулятора на линии Д-разбиения следует выбирать в IV четверти до точки перегиба

графика. В данном примере оптимальными настроечними параметрами будут:

$$q_0 = 2,090802$$
; (11)

$$q_1 = -2,09254. (12)$$

График переходного процесса для полученной цифровой одноконтурной ACP приведен на рисунке 5.

Рис. 5.Оптльный переходный процесс цифровой одноконтурной АСР.

Список использованных источников

- 1. Roland S. Burns. Advanced Control Engineering. Oxford: Butterworth-Heinemann, 2001.
- 2. Поляков К.Ю. Основы теории цифровых систем управления. Санкт-Петербург, 2006.
- 3. Цыпкин Я.З. Теория линейных импульсных систем. М.: Физматгиз, 1963.
- 4. Джури Э. Импульсные системы автоматического регулирования. М.: Физматгиз, 1963.