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MECHANICS

Matching Growth Mechanisms of Irreversible Deformation
of a Hollow Sphere under Uniform Compression
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Abstract—It is proposed to divide the process of accumulation of irreversible deformations by a deformable
solid into successive parts differing in the mechanisms of production of such deformations. With the growth
of stresses in the solid due to mechanical action on it, initially irreversible deformations are produced due to
the viscous properties of the material of the deformed solid as a creep deformation, and, when the stressed
states emerge onto the loading surface, the mechanism of their production changes to plastic. Under unload-
ing, the sequence reverses from a rapid plastic to a slow viscous mechanism. The continuity in such a growth
of irreversible deformations is provided by the corresponding set of creep and plasticity potentials. The fea-
tures of this approach are illustrated by the solution of the boundary-value problem of elastoplastic deforma-
tion on the compression of the spherical layer by an external uniform pressure, when the viscous properties
of the material are specified using the Norton creep power law and the properties of the ideal plastic—by the
plastic potential in the form of the Mises plasticity condition.
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On the basis of the relationship between the model
of large elastoplastic deformations [1, 2], it is proposed
in [3] to divide the irreversible deformations acquired
by the solid into deformations of creep and plastic flow
by the mechanism of their production. Then the equa-
tion of variation of irreversible deformations is proved
to be common for the deformations of creep and plas-
ticity. The source of irreversible deformations is set in
it differently. In the first case, it is the rates of creep
strains during the deformation, which precedes the
plastic flow or, during unloading in the second case,
the rates of plastic deformations under the conditions
of matching the stress states of the loading surface.
The elastoplastic boundaries prove to be surfaces
where the mechanism of accumulation of irreversible
deformations changes from viscous (creep) to plastic
and vice versa. The laws of creep and plastic flow
should be coordinated in such a way that continuous
growth of irreversible deformations was implemented
on such surfaces, which is achieved by an appropriate
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choice of the conditions of plasticity and creep laws. In
[4, 5] by the example of solving the boundary-value
problems in the theory of large deformations, different
approaches are indicated for this consistent choice
using the generalization of the Tresca—Saint-Venant
plasticity conditions for the case of viscous resistance
to plastic flow. Here, we show such a match in the
Norton creep law [6] and the Mises condition for ideal
plasticity [7] by the example of solving the deforma-
tion problem under uniform compression of a hollow
sphere providing both active loading and unloading
including the possibility of repeated plastic flow.

1. We consider the one-dimensional problem of
the loading and unloading of a spherical viscoelasto-
plastic layer bounded by the surfaces r = r, and r = R
(r, < R) loaded by the pressure on its outer surface:

S, (R)=—p(d), ©,()=0. (1)

In relations (1), p(¢) is a set function and ©,, is the
radial component of the stress tensor in the spherical

coordinate system r,0,@. For the components u = u,
of the displacement vector, the tensors of the small
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tions, and the stresses ¢, we have
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