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Abstract 

The present study is devoted to the boundary value problem of coupled thermoelastoplasticity. The temperature depended yield 
criterion and Duhamel Neumann constitutive equation was used. The material subjected to uneven heat treatment under plane strain 
frameworks was considered. The new analytical solution of the problem of uneven heat treatment of the thermoelasticplastic hollow 
cylinder was constructed within of the thermal stresses and plastic flow theories. The three different yield criteria were used. The 
original numerical scheme for calculations of temperature stresses and plastic strains in the frameworks of the von Mises yield 
criterion was developed and implemented. The characteristics of the plastic flow in the heating domain according to the yield 
criterion selection are eliminated. Constructed solutions of the boundary value problems were compared and analyzed for yield 
criteia of von Mises, Tresca and Ishlinsky-Ivlev. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the IUTAM Symposium on Growing solids. 
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1. Introduction. 

The thermal stresses and strains computing in the material under intensive irreversible deformation is one of the 
actual mathematical problem of modern solid mechanics. Calculation of temperature stress inside a cylindrical bodies 
is primarily needed to the stress-strain state investigations in the pipes, shafts, couplings and other cylindrical metal 
products subjected to intensive heat treatment. The precise residual stress computation taking into account the plastic 
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flows can more accurately predict the final tightness of impacting bodies, for example, in shrink fitting process. High 
temperature gradient can cause a plastic flow in the metallic materials exposed to intensive thermomechanical loading, 
for example, in heat engines, turbines, nuclear reactors, and others. Emerging with residual stresses and strains changes 
the strength and the final geometric characteristics of the products. 

The von Mises yield criterion is used in the majority of numerical scheme of the thermal stresses and strains 
calculations1. However, using such schemes for a strong non-stationary processes of irreversible deforming in a 
permanent rapid changing of temperature gradient can lead to an accuracy of numerical computations decreasing2. To 
verify the correctness and accuracy of the numerical scheme the exact analytical solutions due to piecewise linear 
yield criteria can be used3-7. 

Among of the earliest problems which have been solved in the frameworks of the perfect thermoalstoplasticity 
were ones concerning to the calculation of unsteady thermal stresses and strains arising in the elastic-plastic spherically 
symmetric bodies8,9. It has been shown that the process of unsteady heat conduction may lead to the appearance, 
disappearance and the growth of plastic flow domain. A number of problems within plane stress and Tresca yield 
criterion frameworks was solved by the theory of perfect plasticity11,12 and the linear hardening one13,14. In depth 
studies of statement problem correctness for temperature dependent yield stress in thin plates and discs are given in15-

23. The problem solution in frameworks of plane plastic strain hypothesis and for Tresca yield criterion are in detail 
considered in24-31. It should be noted that taking into account the yield criterion depending on the temperature, some 
boundary value problems under Tresca yield criterion don’t have a solution12,14,21,31. 

This study presents a new analytical solution for the classical statement of the boundary value problem of a thick-
walled tube deformation under the non-uniform thermal treatment. The classical solutions in the framework of the 
Tresca yield criterion29 are generalized due to the yield strength depending on of the temperature. New analytical 
solutions of axisymmetric problems were obtained for case of the piecewise linear Ishlinsky-Ivlev yield criterion3,4,32. 
Numerical and graphical comparison of the stress-strain state parameters calculated under the von Mises, Tresca and 
Ishlinsky-Ivlev yield criteria was carried out.  

2. Stress-strain state of a hollow cylinder under non-uniform thermal exposure. 

Let consider hollow sustainable material cylinder with inner and outer radii 1R and 2R  respectively. The strains 

arising in cylinder are infinitesimal and additively compound from reversible (elastic) ije  and irreversible (plastic)

ijp  parts 

rrrrrrrr uped , , 
r

u
ped r , .0zzzzzz ped    (1) 

Here ru  is the radial component of the displacement vector, the comma denotes the partial derivative with respect 

to the corresponding spatial coordinates. 
The free thermal expansion conditions in the cylindrical coordinate system are given by: 

0)( 1Rrr , 0)( 2Rrr .          (2) 

The Duhamel-Neumann constitutive equations33 for isotropic materials are read:  
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Herein ,  denote the constitutive constants (Lame modulus),  is the linear thermal expansion strain. 

The equilibrium equation and the continuity equation in the cylindrical symmetry case can transformed by  
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For thermoelastic equilibrium frameworks the equation 0ijp  is satisfied. Thus and the components of stress 

tensor and displacement vector can be derived by integrating of eq. (4) in form 
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Here 
)2(

)23(  ,  )(tA , )(tB  are the time dependent function, obtained from the boundary conditions (2). 

The linear thermal expansion can computed by  

)),((),( 0TtrTtr          (6) 

where  denotes the linear thermal expansion coefficient, ),( trT  is an actual temperature at the given point, 0T  

is the referential temperature at initial free state. The temperature field can be obtained by the integrating of the heat 
conduction equation under given boundary conditions. We assume that the temperature of the outer cylindrical surface 
is given constant 0T , and the temperature of the inner cylindrical surface depend on time t : 
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The temperature field at different time is shown on Fig.1. 

 
Figure 1. Temperature field at different time inside the considering cylinder 2.0/ 21 RR . 
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The gradual increase of the temperature gradient results in a change in the thermal stress value, whereby it becomes 
possible the irreversible deformation. The plastic flow process is coupled with the yield criteria satisfaction. 

The most widely used in solid mechanics the following three yield criteria, two of which are piecewise linear ones 
Tresca yield criterion (maximum tangential stress criterion): 

,02,,max 133221 kf       (8) 

Ishlinsky-Ivlev yield criterion (maximum reduced stress criterion): 

,0
3
4

,,max 321 kf        (9) 

von Mises yield criterion (maximum equivalent tensile stress criterion) 

08)()()( 22
13

2
32

2
21 kf       (10) 

 
Material of cylinder reversibly deforms, if the inequality 0f  is valid. In equations (8) – (10) we use following 

notation: i  are the principal stress values, 
3

321  is the hydrostatic stress, k  is the yield stress in pure 

shear. We ca assume for yield stress following dependence16 on thermal expansion: 

)1()( 0kk ,          (11) 

wherein 0k  is the yield stress at the referential temperature 0T ,  denotes the constitutive constant specifying the 

rate of yield stress according to temperature rate, which can be experimentally obtained. 
The yield criterion is stated the plastic potential due to von Mises maximum principle. That implicit the associated 

flow rule5-7 as the general constitutive equation of the flow theory 

ij
ij

f
ddp .          (12а) 

Herein ijdp  denote the plastic strains increments,  is the undefined non-negative Lagrange multiplier. 

Yield criteria (8) – (10) in the Haigh–Westergaard stress space can be interpreted as some surface at which solids 
manifest plastic properties. In particular, the Tresca and Ishlinsky-Ivlev yield criteria in in the Haigh–Westergaard 
stress space are presented as a hexagonal prism inclined to the coordinate axes, and the von Mises one is a cylinder. 
The projections of the Tresca and the Ishlinsky-Ivlev yield criteria on deviatoric plane (Fig. 2) are the regular hexagons 
with a center lying on the hydrostatic axis, and the similar projection of von Mises yield criteria is the circle of radius32 

3

22 k
. 
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Figure 2. Yield criteria in deviatory plane. The circle is the von Mises yield criterion, inscribed hexagon is the Tresca yield criterion, escribed 
hexagon is the Ishlinsky-Ivlev yield criterion, i are the projections of the principal stresses at deviatory plane. 

For considering problem in each facet of piecewise linear yield criterion corresponds to the equation that allows to 
analytically determine the stress-strain state parameters. Fig. 3 illustrates the various forms of Tresca a) and Ishlinsky-
Ivlev b) yield criteria for various facet of hexagonal prisms. 

 
Figure. 3. Stresses equation at different edge of the piecewise yield surfaces: a) Tresca yield criterion; b) Ishlinshky-Ivlev yield criterion. 

If the stress-strain state corresponds to the edge of considered yield criterion, when two equation are valid 1f , 2f , 
and we can obtain for associated flow rule following equation6 
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2. Stress-strain state of the termoelastoplastic cylinder under Tresca yield criterion. 

We consider boundary value problem of the deformation of cylinder within frameworks of the Tresca yield 
criterion. Plastic flow starts at time 1tt  under condition shown on Fig. 3а. This criterion is satisfying at inner 
cylindrical surface by equation: 

kzzrr 2      (13) 

For times 1tt  closely to the inner surface the plastic domain 11 arR  is formed, )(1 ta  denotes the elastoplastic 

boundary which separates plastic flow domain from the thermoelastic one 21 Rra . 
The following equations are derived by the plastic flow rule and eq. (13):  
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We obtain differential equation for radial displacement from equations (3), (4), (13), and (14): 
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One can derive equation for displacement and plastic strain by integrating eq. (15): 
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Calculate the thermal stresses in plastic domain 11 arR  due to eq. (16): 
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The unknown functions presented in the eqs. (5), (16), (17) are found from the boundary conditions (2) and the 

continuity conditions of radial stresses and displacement at the elastic-plastic boundary. The position of the elastic-
plastic boundary 1a  for a given time t  is computed by the equation 0),( 1 taprr . 

At a certain time 2tt  if the temperature still increase at inner cylinder surface the following conditions are 
satisfied: 

,2kzzrr     .2krr      (18) 

This fact means the complete plasticity state. In time 2tt  the new elasto-plastic boundary 2a  separates from the 

inner cylinder surface, which discriminates complete plasticity domain 21 arR  and plastic flow one 12 ara . 

Both plastic boundaries move to outer cylinder surface. We found stresses in complete plasticity domain by integrating 
equilibrium equation (5) taking into account eq. (18): 
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The equations for plastic strains follow from the associated plastic flow rule (12b) and eqs (18) 
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Equation for radial displacement inside complete plasticity domain 21 arR  can be derived by eqs (1), (3), (19), 
(20)  
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Stress-strain state parameters at other domains one can compute by the eqs (5), (16), (17) with new unknown 

functions A , B , C , D , and E , F  which calculated by boundary conditions (2) and continuity conditions for 
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stresses and displacement.  
Let find the plastic strains in complete plasticity domain from eq (20)  
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Elasto-plastic boundary positions are calculated by solutions of eqs 0),( 1 taprr , 0),( 2 tap . 

3. Stress-strain state of the termoelastoplastic cylinder under Ishlinsky-Ivlev yield criterion. 

Let once more consider the boundary value problem of the deformation of cylinder, but the plastic potential chose 
in Ishlinsky-Ivlev’s form (see Fig. 3b). Plastic flow starts again at time 1tt  at inner cylinder surface: 

kzzrr 22      (23) 

For arbitrary 1tt  the plastic domain occupies one 11 arR . 
In this case the equations for plastic strains are read due to eqs (23) and (12a)  
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Differential equation for radial displacement one can obtain from (1), (3), (4), (23), (24).  
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Thus integrate eq (25) and calculate radial component of displacement vector in the domain 11 arR : 
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The equation for plastic strain using the eq. (26) is transformed as follows: 
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The thermal stresses therefore can be derived by (26), (27) 
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Unknown time dependent functions  A  , B  , C , D , in eqs (5), (26) – (28) one can find from boundary conditions 
(2) and stress-strain continuity conditions. The plastic boundary position we find from following equation 

0),( 1 taprr . 

At time 2tt  at elastic-plastic boundary 1ar  the two equations are simultaneously valid (see Fig. 3 b): 

,42 kzzrr     .42 kzzrr        (29) 

In this case the complete plasticity domain 21 ara  for any time 2tt  exist. Taking into account the eqs (5) 

and (18) derive the equations for thermal stresses in complete plasticity domain 
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Additional equations for plastic strains one ca obtain using by associated plastic flow rule (12b) and system (18) 
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After that due to eqs (1), (3), (30), (31) the radial displacement function in domain 21 ara  is rewrote as follows 
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Finally, the plastic strains in this domain are computed by  
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From (33) it follows that the equation 0),( 2 taprr  for determining of the elastic-plastic boundary position does 
not lead to the other plastic strains vanishing, which contradicts to the strains compatibility condition. It is obvious 
that in such a case the additional condition that is needed to specify the absence of the other plastic strains on the 
elastic-plastic boundary. However, in this case, the additional seventh equation overrides the system of six linear 
equations. 

The resulting system of seven equations become an incompatible with respect to the variables ,A  ,B ,C ,D ,E .F  
This contradiction implies the impossibility of the existence of the complete plasticity domain near the reversible 
deformation domain. To resolve this problem, the existence of another plastic flow domain placed between the 
complete plasticity domain and elastic deformation domain has been suggested. The stress-strain state in this domain 
satisfies the following condition in the facet of the Ishlinsky-Ivlev yield surface (Fig. 3b)  

kzzrr 42                 (34) 

At the time 2tt  the boundaries 2a , 3a , are simultaneously arise and move with different rates to outer cylinder 

surface. Thus the boundary 1a  begins to move in the opposite direction. At any time 2tt  the three plastic flow 

domains exist in cylinder: 11 arR  is the domain with stresses corresponding to Ishlinsky-Ivlev yield surface facet 

(23), 21 ara  is the domain corresponding to Ishlinsky-Ivlev yield surface edge (29), and 32 ara  is the 
domain corresponding to Ishlinsky-Ivlev yield surface facet (34). 

Now, we compute the stress-strain state parameters in the plastic flow domain 32 ara . The equations can be 
obtained by associated plastic flow rule (12b), according to eq (34) 
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Resulting differential equation for the radial displacement is derived by eqs (1), (3), (4), (34), (35)  
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Integrating previous eq (36) one can compute  
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The following equation for radial plastic strain is valid according to the just found displacement (37)  
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Stresses inside the plastic domain 32 ara  are read 
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As before we find the boundaries positions from eqs: ),(),( 11 taptapzz , ),(),( 12 taptaprr , 0),( 3 taprr . 

3. Stress-strain state of the termoelastoplastic cylinder under von Mises yield criterion. 

Let once more consider the above boundary value problem of the axisymmetric deformation, but the yield criterion 
chose in von Mises form (see Fig. 3b). Plastic flow starts at time 1tt  at inner cylinder surface when the condition 

(10) is satisfied: 

.04 2222 kzzrrzzrrzzrr       (40) 

The plastic strain increments are calculated by following equations taking into account plastic flow rule (12a) 
associated with yield surface (40) 
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The plastic strain increment dependence on stress tensor components makes it impossible to build the exact 
analytical solution of the problem in frameworks of the von Mises yield criterion. One-dimensional formulation of 
the problem allows us to find the stress-strain state parameters by means of numerical solution of differential equations 
with respect to ),( tr , ),( trrr . 

Assume for plastic strain increments (40) ijijij ppdp , where ijp  are the plastic strain computing at previous 

time. Then the reversible strains rre , e  and stress zz  according to eqs (1), (3), (40) is derived by 
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wherein )),(12(),( trdtr , )),(8(),( 2 trdtr . If 0d  then the eqs (40) simulate the 

thermoelastic behavior ( , ).  

We obtain the differential equation necessary for calculating the stress-strain state parameters by substituting eqs 
(41) and (42) in the the total strains equation (4)  
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),(),(

1
),(

trtr
tr . 

Note that the equation (43)  have the general solution (5) inside thermoelastic domain ( 0d ) without initial 

plastic strains 0ijp . During the plastic flow, the equation (43) must be supplemented by the yield criterion (40) and 

the boundary conditions (2). The numerical solution of this system of equations at each time step allows us to calculate 
the values d , rr  and to compute the stresses and irreversible strains. In these numerical calculations we used the 
successive approximations method. For this reason, the system of differential equations is reduced to a system of 
algebraic equations by standard finite-difference approximations of derivatives. The accuracy criterion of the solution 
is the condition validation 0d 2 at each time step in each spatial node where the yield criterion is true (40). 

4. The Comparison of Results. 

Next, we discuss the comparison of thermal stresses in the hollow thermoelastoplastic cylinder calculated for 
different yield criteria at the same temperature field.  

 
Figure. 4. The thermal stresses for various yield criteria. 
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Fig. 4 shows that the radial stress fields do not sufficient differ for various flow criteria. This means that, for 

example, in shrink fitting numerical simulation13,16,17,22,26, when the major stress part is the contact pressure, it is 
possible to use any one of presented here yield criterion. Note that for various temperature gradient rate and product 
geometry, the only plastic flow domain exists under Ishlinsky-Ivlev yield criterion, but under Tresca yield criterion 
usually two plastic domains are presented. Therefore, the problem solution for the piecewise-linear yield criteria and 
given boundary conditions have a simpler form. 

It should also be noted that the stresses values , zz  (Fig. 4) for von Mises yield criterion are placed between 

stresses for piecewise yield criteria. This feature is absolutely consistent with the spatial position of von Mises yield 
surface (see Fig. 2). Therefore, we can construct the analytical solution which is the median one of the Tresca and 
Ishlinsky-Ivlev yield criteria solutions. Fig. 11 shows the comparison of the resulting arithmetical combination of two 
analytical solutions and numerical solution for the von Mises yield criterion one. 

 

 
Figure. 5. The analytical median stress corresponding to Tresca and Ishlinsky-Ivlev yield criterion and numerical results corresponding von 

Mises one. 

Conclusion 

On the basis of simulation results, we can draw the following conclusion: the differences in the results obtained for 
piecewise-linear yield criteria (Tresca, Ishlinsky-Ivlev) and von Mises one can be minimal if we consider the linear 
combinations of the solutions32: in particular, the average value between the stresses satisfying the Tresca and 
Ishllinsky-Ivlev yield criteria in plane strain frameworks is very similar the stresses satisfying the von Mises yield 
criterion. This fact should be taken into account when the use of piecewise linear plasticity conditions provides a 
simpler solution. Particularly the approach is relevant for problems of the thermal conductivity processes when the 
elastic-plastic and unloading boundaries localization is difficult because of significant unevenness and unsteadiness 
thermal stresses and strains fields. 
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