СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УЛК 54.057+544.723

СИНТЕЗ АЛЮМОСИЛИКАТОВ КАЛЬЦИЯ ИЗ НАНОСТРУКТУРИРОВАННЫХ СИНТЕТИЧЕСКИХ ЦЕОЛИТОВ Na-ФОРМЫ И ИССЛЕДОВАНИЕ ИХ СОРБЦИОННЫХ СВОЙСТВ

© 2022 г. П. С. Гордиенко^а, С. Б. Ярусова^{а, b, *}, И. А. Шабалин^а, А. Б. Слободюк^а, Е. А. Нехлюдова^{а, b}, О. О. Шичалин^c, Е. К. Папынов^c, В. Г. Курявый^а, Н. В. Полякова^а, Ю. А. Паротькина^а

^aИнститут химии ДВО РАН, пр-т 100-летия Владивостока, 159, Владивосток, 690022 Россия ^bВладивостокский государственный университет экономики и сервиса, ул. Гоголя, 41, Владивосток, 690014 Россия ^cДальневосточный федеральный университет, п. Аякс, 10, о. Русский, Владивосток, 690922 Россия

*e-mail: yarusova_10@mail.ru Поступила в редакцию 21.03.2022 г. После доработки 28.03.2022 г. Принята к публикации 30.03.2022 г.

Синтезированы и охарактеризованы алюмосиликаты кальция, полученные путем химического модифицирования из синтетических наноструктурированных цеолитов Na-форм. Приведены данные по сорбционным свойствам алюмосиликатов кальция с соотношением $SiO_2: Al_2O_3 = 2:1;4:1;6:1;8:1$ и 10:1. Показано, что максимальная сорбционная емкость данных соединений в статических условиях из растворов без солевого фона по отношению к ионам Cs^+ достигает 1.45 ммоль/г (192.7 мг/г). Результаты, полученные в работе, позволяют рассматривать данные соединения как материалы, перспективные для сорбции и иммобилизации долгоживущих радионуклидов.

Ключевые слова: алюмосиликаты кальция, химическое модифицирование, сорбция, цезий, максимальная сорбционная емкость

DOI: 10.31857/S0044457X22090045

ВВЕДЕНИЕ

Долгоживущие радионуклиды представляют опасность для живых организмов при аккумулировании выше допустимых норм, и по многим элементам накоплено достаточно данных, доказывающих их негативное влияние на биологические объекты [1, 2]. Для устранения негативного воздействия на биосферные биологические объекты используются различные методы и материалы, позволяющие их концентрировать в форме высокостабильных соединений с последующей переработкой и захоронением. В связи с этим представляет интерес получение эффективных материалов для сорбции и иммобилизации долгоживущих радионуклидов, в частности ¹³⁷Сs.

Широкое применение в качестве таких материалов нашли различные природные и синтетические алюмосиликаты (цеолиты) [3-10].

В работах [11—13] представлены данные по сорбции ионов Cs^+ рентгеноаморфными наноструктурированными алюмосиликатами калия (KAlSi_xO_y·nH₂O, где x=1-5, y=2(x+1)) в статических условиях, в том числе из растворов с различным солевым фоном. Изучены кинетические

параметры сорбции и определена энергия активации процесса сорбции. Установлено, что максимальная сорбционная емкость по отношению к ионам $\mathrm{Cs^+}$ в статических условиях при сорбции из растворов без солевого фона для $\mathrm{KAlSi_3O_8\cdot 1.5H_2O}$ достигает 3.7 ммоль/г, а коэффициент межфазного распределения (K_d) ионов при соотношении т: ж = 1: 4000 достигает значения 1 × 10⁵ мл/г. При этом алюмосиликаты аналогичного состава могут быть получены из различных кремнийсодержащих отходов, например, из отходов растительного производства [14].

В [15, 16] представлены результаты исследования сорбционных свойств синтетических алюмосиликатов кальция (**ACK**) по отношению к ионам Sr^{2+} и Cs^+ из различных по ионному составу водных растворов в статических условиях. Для получения ACK с соотношениями Al : Si=2:2;2:6;2:10 первоначально синтезировали соли поликремниевой кислоты с заданным соотношением $SiO_2:M_2O$ (M — щелочной металл калий). Полученный раствор жидкого калиевого стекла смешивали с приготовленным раствором хлоридов кальция и алюминия в соотношении со стехио-

метрическими коэффициентами согласно уравнению (1):

$$8KOH + nSiO_2 \cdot kH_2O + CaCl_2 +$$

+ $2AlCl_3 \cdot 6H_2O + H_2O = CaAl_2Si_nO_{(n+2)2} \cdot mH_2O + (1)$
+ $8KCl + H_2O$, где $n = 2$; 6; 10.

Авторами работы было замечено, что при описанном методе получения алюмосиликатов соотношение SiO_2 : Al_2O_3 выполняется в пределах ошибки измерений заданных мольных отношений по оксидам кремния и алюминия, но если суммарный заряд катионов превышает содержание алюминия в синтезируемом алюмосиликате, то из этого следует, что в составе получаемого вещества могут присутствовать другие фазы - гидроксиды или карбонаты. Если алюминий при замещении кремния находится в тетраэдрическом окружении кислорода в виде анионного комплекса, то в спектрах, по данным ЯМР, присутствуют пики, относящиеся к алюминию в октаэдрическом окружении кислорода, это является подтверждением наличия в исследуемом составе гидроксида алюминия. Полученные таким методом алюмосиликаты не являются однофазными, в составе конечных продуктов присутствуют и нерастворимые карбонаты кальция, которые взаимодействуют с сорбатом.

Данные соединения, получаемые из водных растворов низкотемпературным и быстрым способом, представляют перспективу в качестве сорбционного материала для извлечения ¹³⁷Сѕ из различных водных сред, а также могут использоваться в качестве неорганической основы для получения твердотельных матриц с целью надежной иммобилизации данного радионуклида, например, при кондиционировании отработанной формы сорбента [17—20]. Силикаты как сырье для таких матриц удовлетворяют предъявляемым к ним требованиям (высокая химическая и радиационная устойчивость и механическая прочность) [21].

Известно, что соли поликремниевых (алюмокремниевых) кислот, к которым относятся алюмосиликаты, легко подвергаются химическому модифицированию, связанному с замещением катионов, компенсирующих избыточный заряд алюмокислородного тетраэдра, катионами солей более сильных кислот.

Авторами настоящей работы синтезированы алюмосиликаты Na-формы с заданным отношением $SiO_2: Al_2O_3$, равным 2:1; 4:1; 6:1; 8:1; 10:1 с последующим их химическим модифицированием ионами кальция. Химическое модифицирование алюмосиликатов Na-формы осуществляли путем обработки в растворе соли кальция при температуре не более 100° С. После модифицирования было проведено сравнение степени заме-

щения ионов Na^+ кальцием, при одинаковых условиях обработки были получены данные по составу, морфологии, сорбционным свойствам алюмосиликатов кальция с различным отношением SiO_2 : Al_2O_3 по отношению к ионам Cs^+ .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез и химическое модифицирование образиов. В качестве исходных веществ для синтеза алюмосиликатов с заданными соотношениями $SiO_2: Al_2O_3 = 2:1; 4:1; 6:1; 8:1; 10:1$ использовали следующие реагенты: $AlCl_3\cdot 6H_2O$ (ч., $\Gamma OCT 2463-80$), кислоту кремниевую водную $SiO_2 \cdot nH_2O$ ($\Gamma OCT 4214-78$), NaOH (ч. д. а.), $CaCl_2$ (ч.).

Образцы алюмосиликатного $M_2Al_2Si_{2k}O_{2(2k+2)}\cdot nH_2O$ (M = Na; k = 1, 2, 3, 4, 5) c изменяющимся соотношением компонентов SiO₂: $: Al_2O_3(2:1:4:1:6:1:8:1:10:1)$ были синтезированы путем растворения кремнезема в гидроксиде натрия с получением жидкого стекла с заданным силикатным модулем $M_{*} = \text{SiO}_{2}/\text{M}_{2}\text{O}$ (M = = Na) и последующим смешением полученного раствора с раствором хлорида алюминия. Соотношения компонентов рассчитывали таким образом, чтобы получать алюмосиликаты с заданным значением k = Si/Al и конечным значением рН раствора, равным 7. На рис. 1 приведена зависимость состава алюмосиликата (точки пересечения с осью абсцисс) от модуля жидкого стекла при получении из растворов с конечным значением рН раствора, равным 7.

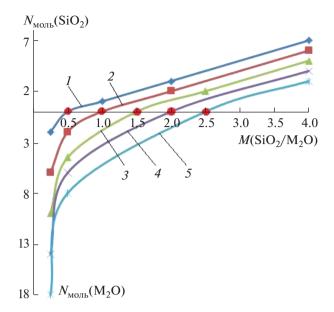
Выбранные условия выполняются, если приготовленный раствор жидкого стекла имеет модуль $M_{\rm x}=1/2k$, а компоненты взяты согласно стехиометрическим коэффициентам уравнения (2):

$$4M_2O + 2kSiO_2 + 2AlCl_3 = = M_2Al_2Si_{2k}O_{2(2k+2)} + 6MCl.$$
 (2)

Образовавшийся осадок отделяли от раствора через фильтр "синяя лента"; при промывке в фильтрате проводили контроль на наличие ионов хлора. Осадки высушивали до постоянного веса при температуре 100—105°C.

Для получения цеолитов Са-формы исходные алюмосиликаты Na-формы выдерживали в насыщенном растворе хлорида кальция в течение 2 ч при слабом кипении. Затем осадок отделяли от раствора через фильтр "синяя лента", промывали дистиллированной водой до отрицательной реакции на ионы хлора и сушили при температуре 105°C.

Опыты по сорбции. Опыты по сорбции ионов Cs^+ проводили в статических условиях при соотношении твердой и жидкой фаз, равном 1: 100, и температуре $20^{\circ}C$ из водных растворов хлорида цезия без солевого фона с различными начальны-


ми концентрациями ионов Cs⁺ до 75 ммоль/л при перемешивании на магнитной мешалке RT 15 power (Ika Werke, Германия) в течение 3 ч.

Методы анализа. Количество кристаллизационной воды в полученных цеолитах (табл. 1) определяли по разнице веса образца, высушенного при температуре $100-105^{\circ}$ С, и образца, отожженного при 800° С. Расчет кристаллизационной воды проводили и по термограммам, полученным с использованием дериватографа Q-1500 D системы Ф. Паулик, П. Паулик, Л. Эрдей фирмы МОМ (Венгрия) (точность определения температуры $\pm 5^{\circ}$ С) при отжиге образцов до 800° С при скорости 5 град./мин в открытом платиновом тигле на воздухе.

Для количественного определения элементного состава синтезированных алюмосиликатов применяли энергодисперсионный рентгенофлуоресцентный метод с использованием спектрометра Shimadzu EDX 800 HS (Япония). Навеску образна растирали в агатовой ступке с борной кислотой (2:1 по весу) и помещали в пресс-форму диаметром 20 мм. Таблетку-излучатель прессовали в течение 2 мин при давлении 5000 кг, после чего помещали в спектрометр и проводили измерения. Время экспозиции 100 с в каждом энергетическом канале, источник излучения рентгеновская трубка с Rh-анодом, расчет концентрации элементов производили по методу фундаментальных параметров с помощью программного комплекса спектрометра без учета легких элементов. Относительная погрешность определения элементного состава не превышала $\pm 10\%$.

Удельную поверхность образцов определяли методом низкотемпературной адсорбции азота с использованием прибора Сорбтометр-М (Россия).

Рентгенограммы осадков снимали на автоматическом дифрактометре D8 Advance (Германия) с вращением образца в CuK_{α} -излучении. Рентгенофазовый анализ (**РФА**) проводили с использованием программы поиска EVA с банком порошковых данных PDF-2.

Рис. 1. Зависимость состава алюмосиликатов с заданным k от $M_{\rm **}$ жидкого стекла для системы $\rm M_2O-SiO_2-AlCl_3-H_2O:$ $\it I-MAlSiO_4;$ $\it 2-MAlSi_2O_6;$ $\it 3-MAlSi_3O_8;$ $\it 4-MAlSi_4O_{10};$ $\it 5-MAlSi_5O_{12}.$

Изучение морфологических характеристик и подтверждение локального элементного состава выполнены на электронном микроскопе высокого разрешения Hitachi S5500 (Япония).

Спектры ЯМР 27 Al, 29 Si, 1 H записывали на спектрометре Bruker Avance AV-300 ($B_0 = 7$ Тл) (Германия) с применением методики вращения образца под магическим углом (**BMY**) со скоростью 12 кГц. Регистрацию спектров ЯМР 27 Al проводили методом эха Хана, в качестве внешнего эталона использовали разбавленные водные растворы AlCl₃ · 6 H₂O (ион [Al(H₂O)₆]³⁺) и NaCl. Для регистрации спектров 29 Si применяли метод кросс-поляризации 29 Si- 1 H} с подавлением взаимодействий 29 Si- 1 H, а химические сдвиги 29 Si и 1 H отсчитывали от сигнала тетраметилсилана. Точность определения химических сдвигов со-

Таблица 1. Элементный состав, содержание кристаллизационной воды и удельная поверхность алюмосиликатов Na-формы

Формула		Элег	Удельная		
	$H_2O_{\text{крист}}$, моль	Na	Si	Al	поверхность $S_{yд}$, м 2 /г
NaAl ₂ Si ₂ O ₈	3.0	18.7	42.1	39.0	254.5
$NaAl_2Si_4O_{12}$	3.4	13.3	56.8	29.8	143.9
$NaAl_2Si_6O_{16}$	4.5	13.7	63.5	22.6	225.6
$NaAl_2Si_8O_{20}$	5.5	9.5	70.9	19.5	154.0
$NaAl_2Si_{10}O_{24}$	6.0	6.9	77.0	16.1	304.9

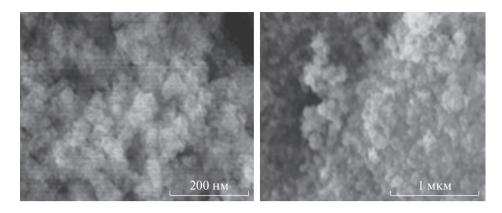


Рис. 2. СЭМ-изображения алюмосиликата натрия.

ставляла 1 м.д., определения интегральных интенсивностей сигналов — 10%.

Содержание ионов Cs⁺ в исходных растворах и фильтратах после сорбции определяли методом атомно-абсорбционной спектрометрии на двухлучевом спектрометре Solaar M6 (Thermo Scientific, США) по аналитической линии 852.1 нм. Предел обнаружения ионов цезия в водных растворах составляет 0.01 мкг/мл.

Сорбционную емкость (A_c , ммоль/г) исследуемых образцов рассчитывали по формуле:

$$A_{\rm c} = \frac{(C_{\rm ucx} - C_{\rm p})}{m} V, \tag{3}$$

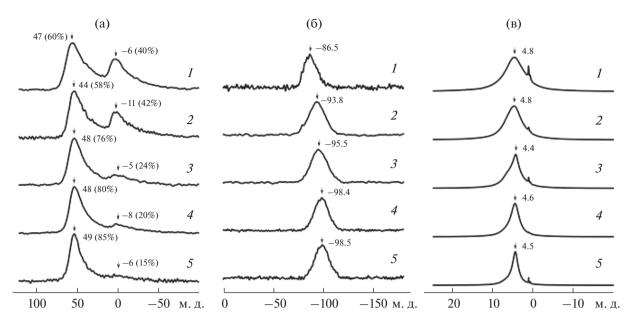
где $C_{\text{исх}}$ — исходная концентрация ионов Cs^+ в растворе, ммоль/л; C_{p} — равновесная концентрация ионов Cs^+ в растворе, ммоль/л; V — объем раствора, л; m — масса сорбента, г.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Характеристика исходных и модифицированных алюмосиликатов

На всех рентгенограммах образцов алюмосиликатов Na-формы с соотношением $SiO_2:Al_2O_3$ от 2 до 10 наблюдаются широкие максимумы в

диапазоне малых углов 2θ . Отсутствие четких брэгговских пиков подтверждает рентгеноаморфность образцов, что определяется их низкой степенью кристаллизации и наноразмерностью кристаллитов. Установлено, что с увеличением соотношения $SiO_2: Al_2O_3$ в ряду отношений 2:1,4:1,6:1,8:1,10:1 последовательно увеличиваются межплоскостные расстояния от 3.359 до 3.711 Å.


Данные по составу, удельной поверхности и содержанию кристаллизационной воды в полученных образцах приведены в табл. 1.

Полученные образцы состава $M_2Al_2Si_xO_{2(x+4)}\cdot nH_2O$ (M = Na) представляют собой нанодисперсные порошки с развитой поверхностью, состоящие из частиц размером 10-20 нм, сросшихся в агломераты. На рис. 2 приведены СЭМ-изображения образца наноструктурированного алюмосиликата натрия с соотношением $SiO_2:Al_2O_3=2:1$. Принципиальных различий в морфологии образцов с различным соотношением $SiO_2:Al_2O_3$ не обнаружено.

Для исследуемых алюмосиликатов натрия установлено увеличение удельной поверхности с ростом отношения SiO_2 : Al_2O_3 , которое достигает более $300 \text{ M}^2/\text{г}$ (табл. 1).

Таблица 2. Элементный состав цеолитов Са-формы, полученных в результате модифицирования алюмосиликатов Na-формы

Соотношение SiO_2 : Al_2O_3	Предполагаемая	Элементный состав, мас. % (моль)				
в исходном алюмосиликате Na-формы	формула	Na	Ca	Si	Al	
2:1	CaAl ₂ Si ₂ O ₈	_	27.0 (0.67)	28.5 (1.0)	32.6 (1.2)	
4:1	CaAl ₂ Si ₄ O ₁₂	_	24.4 (0.61)	50.9 (1.8)	24.1 (0.89)	
6:1	CaAl ₂ Si ₆ O ₁₆	_	22.0 (0.55)	53.1 (1.9)	21.2 (0.78)	
8:1	CaAl ₂ Si ₈ O ₂₀	_	19.6 (0.49)	63.8 (2.3)	15.9 (0.58)	
10:1	CaAl ₂ Si ₁₀ O ₂₄	_	14.4 (0.36)	68.5 (2.5)	17.1 (0.63)	

Рис. 3. Спектры ЯМР ВМУ исследованных алюмосиликатов кальция: $a - {}^{27}Al$, $6 - {}^{29}Si$, $B - {}^{1}H$ (SiO₂: $Al_2O_3 = 2:1$ (*1*); 4:1 (*2*); 6:1 (*3*); 8:1 (*4*); 10:1 (*5*)).

Элементный состав цеолитов Са-формы, полученных в результате модифицирования алюмосиликатов Nа-формы, с соответствующим соотношением SiO_2 : Al_2O_3 приведен в табл. 2.

При таком методе химического модифицирования исходного алюмосиликата натрия в полученных образцах алюмосиликатов кальция натрия не обнаружено, удельная поверхность образцов уменьшается в 2-2.5 раза. Полное замещение катионов натрия кальцием в алюмосиликатах Nаформы следует объяснить близостью ионных радиусов (Са -0.104 нм, Na -0.116 нм). Морфология алюмосиликатов кальция после модифицирования от исходных алюмосиликатов Na-формы не отличается.

ЯМР-исследование алюмосиликатов

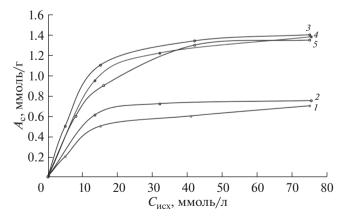
Спектры ЯМР 27 АІ (рис. 3а, табл. 3) содержат сигналы вблизи $^{\sim}0$ и $^{\sim}50$ м.д., которые могут быть

отнесены к окта- и тетракоординированным атомам алюминия соответственно [22, 23]. Сигналы тетракоординированных атомов имеют большую интенсивность и более заметны вследствие их меньшей ширины. Интенсивность этих сигналов увеличивается с ростом содержания кремния в образце, и для состава $CaAl_2Si_{10}O_{24}$ определить наличие сигнала вблизи 0 м.д. становится затруднительным.

Спектры ЯМР ВМУ 29 Si исследованных соединений (рис. 36) содержат по одному широкому сигналу, положение которого систематически зависит от состава образца и определяется соотношением структурных фрагментов Si-O-Si и Si-O-Al. Если для состава CaAl $_2$ Si $_10$ O $_24$ сигнал имеет сдвиг - 98.5 м.д., то для CaAl $_2$ Si $_2$ O $_8$ положение сигнала составляет - 86.5 м.д.

Таблица 3. Параметры ЯМР спектров ²⁷Al

Соединение	Компонент	1 (тетраэдр)	Компонент 2 (октаэдр)			
	х. с.*, м. д.	площадь, %	Х. С., М. Д.	площадь, %		
CaAl ₂ Si ₂ O ₈	47	60	-6	40		
CaAl ₂ Si ₄ O ₁₂	44	58	-11	42		
CaAl ₂ Si ₆ O ₁₆	48	76	-5	24		
CaAl ₂ Si ₈ O ₂₀	48	80	-8	20		
CaAl ₂ Si ₁₀ O ₂₄	49	85	-6	15		
	Соединение СаAl ₂ Si ₂ O ₈ СаAl ₂ Si ₄ O ₁₂ СаAl ₂ Si ₆ O ₁₆ СаAl ₂ Si ₈ O ₂₀	$egin{array}{ccccc} & & & & & & & & & & & & & & & & &$	СоединениеКомпонент 1 (тетраэдр)х. с.*, м. д.площадь, %CaAl2Si2O84760CaAl2Si4O124458CaAl2Si6O164876CaAl2Si8O204880	Соединение Компонент 1 (тетраэдр) Компонент x. c.*, м. д. площадь, % х. с., м. д. CaAl ₂ Si ₂ O ₈ 47 60 -6 CaAl ₂ Si ₄ O ₁₂ 44 58 -11 CaAl ₂ Si ₆ O ₁₆ 48 76 -5 CaAl ₂ Si ₈ O ₂₀ 48 80 -8		


^{*} Химический сдвиг.

	H ₂ О _{крист} , моль	Элементный состав, мас. % (моль)				Удельная поверхность
Брутто-формула		Si	Al	Ca	Фазовый состав, %	$S_{\rm уд}$, м ² /г (относительная плотность d , г/см ³)
Ca _{0.67} Al _{1.20} Si _{1.0} O _{3.44} (OH) _{1.44} (CO ₃) _{0.31}	4	28.5 (1.0)	32.6 (1.2)	27.0 (0.67)	Аморфная фаза (68.5%), гидроокись Al(OH) ₃ (23.8%), кальцит CaCO ₃ (7.7%)	81.0 (2.08)
$Ca_{0.61}Al_{0.89}Si_{1.8}O_{4.63}(OH)_{1.12}(CO_{3})_{0.35}$	5	50.9 (1.8)	24.1 (0.89)	24.4 (0.61)	Аморфная фаза (77%), гидроокись Al(OH) ₃ (15.5%), кальцит CaCO ₃ (7.5%)	67.5 (2.2)
$Ca_{0.55}Al_{0.78}Si_{1.9}O_{4.98}(OH)_{0.56}(CO_{3})_{0.25}$	6	53.1 (1.9)	21.2 (0.78)	22.0 (0.55)	Аморфная фаза (86.1%), гидроокись Al(OH) ₃ (8.3%), кальцит CaCO ₃ (5.6%)	71.8 (2.03)
$Ca_{0.49}Al_{0.58}Si_{2.3}O_{5.53}(OH)_{0.35}(CO_{3})_{0.26}$	7	63.8 (2.3)	15.9 (0.58)	19.6 (0.49)	Аморфная фаза (89.6%), гидроокись Al(OH) ₃ (5%), кальцит CaCO ₃ (5.4%)	123.3 (1.99)
$\text{Ca}_{0.36}\text{Al}_{0.63}\text{Si}_{2.5}\text{O}_{6.07}(\text{OH})_{0.28}(\text{CO}_3)_{0.09}$	8	68.5 (2.5)	17.1 (0.63)	14.4 (0.36)	Аморфная фаза (94.4%), гидроокись Al(OH) ₃ (3.8%), кальцит CaCO ₂ (1.8%)	134.3 (2.0)

Таблица 4. Фазовый, элементный состав и удельная поверхность алюмосиликатов кальция (образцы после сушки при температуре 105°C)

Спектры MAS ЯМР 1 H содержат сигналы в области 4.6—4.8 м.д., составные для образцов CaAl $_2$ Si $_6$ O $_{16}$ и CaAl $_2$ Si $_8$ O $_{20}$.

Исходя из данных элементного состава и спектров ЯМР, содержание ионов Ca^{2+} в образцах находится в избытке. Если учесть, что часть атомов Al находится в тетраэдрической координации (до 60-80%) и относится к цеолиту, то такое же количество зарядов в мольном отношении должно быть компенсировано зарядами катионов, в данном случае кальция, а избыточную часть кальция следует отнести к карбонату кальция, получаемому в процессе синтеза, что подтверждается экспе-

Рис. 4. Изотермы сорбции ионов Cs⁺ образцами алюмосиликатов кальция с соотношением $SiO_2: Al_2O_3 = 2:1$ (*I*); 4:1 (*2*); 6:1 (*3*); 8:1 (*4*); 10:1 (*5*).

риментами. Остаточную долю Al (20–40%), находящегося в октаэдрической координации с кислородом, следует отнести к гидроксиду Al(OH)₃.

Таким образом, полученные соединения следует представить в виде фазового и элементного состава, представленного в табл. 4.

Сорбция ионов Cs+

Зависимости сорбционной емкости образцов алюмосиликатов кальция от исходной концентрации ионов Cs^+ в растворе приведены на рис. 4.

Для определения параметров изотерм экспериментальные данные по сорбции были обработаны в координатах линейного уравнения Ленгмюра:

$$1/A_{\rm c} = [1/(A_{\rm m}K_{\rm n}C_{\rm p})] + 1/A_{\rm m}, \quad (y = ax + b),$$
 (4)

где $A_{\rm c}$ ($A_{\rm m}$) — сорбционная (максимальная) емкость, ммоль/г; $K_{\rm n}$ —константа Ленгмюра, л/ммоль; $C_{\rm p}$ — равновесная концентрация, ммоль/л.

Найденные графическим способом параметры уравнений Ленгмюра представлены в табл. 5. Видно, что модель Ленгмюра является подходящей для описания сорбции ионов Cs⁺ исследуемыми соединениями, о чем свидетельствуют соответствующие коэффициенты корреляции.

Полученные данные показывают определенные различия в величинах максимальной сорбционной емкости между образцами в зависимости от соотношения $SiO_2:Al_2O_3$. Для алюмосиликатов 3—5 сорбционная емкость по ионам Cs^+ вы-

Таблица 5.	Параметры уравнений Ленгмюра при сорб-
ции ионов	Сs ⁺ алюмосиликатами

Соотина	Параметры уравнения Ленгмюра					
Соединение	A_m , ммоль/г	k, л/ммоль	R^2			
CaAl ₂ Si ₂ O ₈	0.841	0.11	0.9842			
$CaAl_2Si_4O_{12}$	0.844	0.21	0.9900			
$CaAl_2Si_6O_{16}$	1.45	1.18	0.9924			
$CaAl_2Si_8O_{20}$	1.37	0.55	0.9776			
$CaAl_2Si_{10}O_{24}\\$	1.34	0.39	0.9772			

ше, чем для образцов **1** и **2**. Наибольшее значение сорбционной емкости A_{max} установлено для образца **3** и достигает значения 1.45 ммоль/г (192.7 мг/г) (рис. 4).

ЗАКЛЮЧЕНИЕ

Синтезирован и изучен ряд наноструктурированных алюмосиликатов кальция, полученных из алюмосиликатов Na-формы с соотношением $SiO_2:Al_2O_3=2:1,4:1,6:1,8:1,10:1$. Установлено, что алюмосиликаты кальция рентгеноаморфны, имеют величину удельной поверхности от 67 до $134 \text{ m}^2/\text{r}$, которая увеличивается с ростом соотношения $SiO_2:Al_2O_3$. Определен фазовый, элементный состав, изучена морфология полученных соединений.

Процесс сорбции ионов Cs^+ в рассматриваемых условиях описывается уравнением Ленгмюра. Максимальная сорбционная емкость наблюдается у синтезированного алюмосиликата кальция с отношением $SiO_2: Al_2O_3 = 6:1$ и составляет 1.45 ммоль/г (192.7 мг/г).

Показано, что сорбенты на основе алюмосиликатов кальция, полученные путем химического модифицирования алюмосиликатов Nа-формы при их обработке в растворе хлорида кальция, могут быть рекомендованы в качестве эффективных сорбентов для очистки водных растворов в статических условиях от ионов Cs⁺.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено в рамках государственного задания Института химии ДВО РАН, № FWFN(0205)-2022-0002, тема 2, раздел 3.

Атомно-абсорбционный анализ выполнен на оборудовании ЦКП Дальневосточный центр структурных исследований ИХ ДВО РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ИНФОРМАЦИЯ О ВКЛАДЕ АВТОРОВ

Авторы П.С. Гордиенко, С.Б. Ярусова придумали и разработали эксперимент, авторы И.А. Шабалин и Е.А. Нехлюдова синтезировали образцы. А.Б. Слободюком проведено ЯМР-исследование образцов. Авторы О.О. Шичалин, Е.К. Папынов участвовали в обработке данных и в написании текста статьи. В.Г. Курявым исследованы морфологические характеристики образцов. Н.В. Поляковой выполнен анализ элементного состава образцом с использованием энергодисперсионного рентгенофлуоресцентного метода. Ю.А. Паротькина провела исследования методом атомно-абсорбционной спектрометрии. Все авторы участвовали в обсуждении результатов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Impact of Cesium on Plants and the Environment / Eds. Gupta D.K., Walther C. Switzerland: Springer Int. Publ., 2017. 319 p. https://doi.org/10.1007/978-3-319-41525-3
- Strontium Contamination in the Environment // The Handbook of Environmental Chemistry / Eds. Pathak P., Gupta D.K. Switzerland: Springer Nature Switzerland AG, 2020. V. 88. 250 p. https://doi.org/10.1007/978-3-030-15314-4
- Borai E.H., Harjula R., Malinen L. et al. // J. Hazard. Mater. 2009. V. 172. P. 416. https://doi.org/10.1016/j.jhazmat.2009.07.033
- Singh B.K., Tomar Radha, Kumar Sumit et al. // J. Hazard. Mater. 2010. V. 178. P. 771. https://doi.org/10.1016/j.jhazmat.2010.02.007
- Durrant C.B., Begg J.D., Kersting A.B. et al. // Sci. Total Environ. 2018. V. 610–611. P. 511. https://doi.org/10.1016/j.scitotenv.2017.08.122
- Lee N.K., Khalid H.R., Lee H.K. // Microporous Mesoporous Mater. 2017. V. 242. P. 238. https://doi.org/10.1016/j.micromeso.2017.01.030
- 7. *Милютин В.В., Некрасова Н.А., Каптаков В.О.* // Радиоактивные отходы. 2020. № 4. С. 80. https://doi.org/10.25283/2587-9707-2020-4-80-89
- 8. *Леонтьева Т.Г., Москальчук Л.Н., Баклай А.А. и др. //* Сорбционные и хроматографические процессы. 2018. Т. 18. № 5. С. 726. https://doi.org/10.17308/sorpchrom.2018.18/599
- 9. *Palchik N.A., Razvorotneva L.I., Moroz T.N. et al.* // Russ. J. Inorg. Chem. 2019. V. 64. № 3. P. 308. [*Пальчик Н.А., Разворотнева Л.И., Мороз Т.Н. и др.* // Журн. неорган. химии. 2019. Т. 64. № 3. С. 251.] https://doi.org/10.1134/S003602361903015X
- 10. Gordienko P.S., Shabalin I.A., Yarusova S.B. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 12. Р. 1579. [Гор-диенко П.С., Шабалин И.А., Ярусова С.Б. и др. // Журн. неорган. химии. 2019. Т. 64. № 12. С. 1326.] https://doi.org/10.1134/S0036023619120052
- 11. Gordienko P.S., Yarusova S.B., Shabalin I.A. et al. // Radiochemistry. 2014. V. 56. № 6. Р. 607. [Гордиен-ко П.С., Ярусова С.Б., Шабалин И.А. и др. // Радиохимия. 2014. Т. 56. № 6. С. 518.] https://doi.org/10.1134/S1066362214060051

- 12. Gordienko P.S., Shabalin I.A., Yarusova S.B. et al. // Theor. Found. Chem. Eng. 2018. V. 52. № 4. P. 581. [Гордиенко П.С., Шабалин И.А., Ярусова С.Б. и др. // Хим. технология. 2017. Т. 18. № 1. С. 2.] https://doi.org/10.1134/S0040579518040127
- 13. Gordienko P.S., Shabalin I.A., Yarusova S.B. et al. // Inorg. Mater. 2018. V. 54. № 11. Р. 1151. [Гордиенко П.С., Шабалин И.А., Ярусова С.Б. и др. // Неорган. материалы. 2018. Т. 54. № 11. С. 1217.] https://doi.org/10.1134/S0020168518110079
- 14. *Yarusova S.B.*, *Gordienko P.S.*, *Panasenko A.E. et al.* // Russ. J. Phys. Chem. A. 2019. V. 93. № 2. P. 333. [Ярусова С.Б., Гордиенко П.С., Панасенко А.Е. и др. // Журн. физ. химии. 2019. Т. 93. № 2. С. 278.] https://doi.org/10.1134/S003602441902033X
- 15. Gordienko P.S., Shabalin I.A., Suponina A.P. et al. // Russ. J. Inorg. Chem. 2016. V. 61. № 8. P. 946. [Гордиенко П.С., Шабалин И.А., Супонина А.П. и др. // Журн. неорган. химии. 2016. Т. 61. № 8. С. 993.] https://doi.org/10.1134/S003602361608009X
- 16. Gordienko P.S., Shabalin I.A., Yarusova S.B. et al. // Russ. J. Phys. Chem. A. 2016. V. 90. № 10. P. 2022. [Гордиенко П.С., Шабалин И.А., Ярусова С.Б. и др. // Журн. физ. химии. 2016. Т. 90. № 10. С. 1534.] https://doi.org/10.1134/S0036024416100125

- 17. Shichalin O.O., Papynov E.K., Maiorov V.Yu. et al. // Radiochemistry. 2019. V. 61. № 2. P. 185. [Шичалин О.О., Папынов Е.К., Майоров В.Ю. и др. // Радиохимия. 2019. Т. 61. № 2. С. 135.] https://doi.org/10.1134/S1066362219020097
- 18. *Yarusova S.B.*, *Shichalin O.O.*, *Belov A.A. et al.* // Ceramics Int. 2022. V. 48. № 3. P. 3808. https://doi.org/10.1016/j.ceramint.2021.10.164
- Papynov E.K., Shichalin O.O., Mayorov V.Yu. et al. // J. Hazard. Mater. 2019. V. 369. P. 25. https://doi.org/10.1016/j.jhazmat.2019.02.016
- 20. *Papynov E.K., Belov A.A., Shichalin O.O. et al.* // Nucl. Eng. Technol. 2021. V. 53. № 7. P. 2289. https://doi.org/10.1016/j.net.2021.01.024
- Orlova A.I., Ojovan M.I. // Materials. 2019. V. 12. P. 2638. https://doi.org/10.3390/ma12162638
- Fitzgerald J., Piedra G., Dec S. et al. // J. Am. Chem. Soc. 1997. V. 119. P. 7832. https://doi.org/10.1021/ja970788u
- Ejeckam R.B., Sheriff B.L. // Can. Mineral. 2005. V. 43.
 P. 1131.
 https://doi.org/10.2113/gscanmin.43.4.1131