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Abstract. The dimensional problem of a formation of the residual stresses in the thin circular 

elastoplastic plate under the given thermal action was analytically solved. The generalized Prandtl-

Reuss thermoelastoplastic model was used. The effect of the non-stationary temperature gradient on 

the residual stresses field formation was investigated under the condition that the yield stress 

depends on a temperature. The borders of the irreversible deformation domain and unloading 

domain were computed. The level of residual stresses was calculated. 

Introduction 

The field of residual stresses is formed in the process of elastoplastic deformation with subsequent 

unloading of the material. It is known that residual stresses may arise because of local thermal 

actions, for example, near the welding joints [1]. Accounting of such strains and stresses is needed 

for accurate determination of the geometry and strength characteristics of the concerned materials. 

Temperature fields have influence on the yield stress of material, by increasing a probability of the 

non-reversible deformations appearance. Detailed analysis of stress-strain state of an elastoplastic 

thin plate with infinity size was considered [2]. The features of formation of non-reversible 

deformation fields were observed for the finite size solid cylindrical body having inner heat source 

[3]. The numerical solutions of the shrink fit problem for hollow discs were compared using the 

Mises yield condition and Tresca yield condition [4]. The analytical solution of the shrink fit 

problem for thin circular plates was considered in condition of yield strength dependence on 

temperature [5]. 

This work presents the exact solution of the residual stresses formation problem using the 

assumption that the connection between the processes of heat conduction and deformation under the 

conditions of intensive thermal action can be neglected, i.e., the calculations can be performed in 

the framework of the theory of thermal stresses [6]. The features of residual strains and stresses 

formation for the load-free thin circular plate with rapidly changeable temperature gradient on the 

edge were investigated. The method for determining the non-reversible deformations on the 

boundary between the plastic flow domain and the unloading domain was shown and the residual 

strains and stresses were calculated. 

Mathematical model 

Boundary conditions for the plate with a radius R  are written in the form: 

0),0(,0),( == tutR rrrσ          (1) 

where ru  is the radial component of the displacement vector, rrσ is the radial component of the 

stress tensor. 

At the initial time 0=t  the temperature of the plate is 
0)0,( TrT = . At the time 0>t  on the 

edge and center of the plate the following conditions are satisfied: 
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where x  is the parameter defining the temperature rate increasing on the edge of the plate. The 

subscript after comma denotes derivation with respect to the corresponding spatial coordinate. At 

the time ∞→t  the determination of a constant temperature kTRT =)(  follows from the equation (2). 

Temperature field is described by the heat equation: 

( ) ,
,,, rrt rT

r
T

χ
=            (3) 

where χ is the thermal diffusivity of a material. 

Taking into consideration that infinitesimal strains arising due to the thermal action (3) relations 

for the radial and angular components of strain have the following form: 

,,, ϕϕϕϕϕϕ pe
r

u
dpeud r

rrrrrrrr +==+==        (4) 

where ,ije  ijp  are the elastic and plastic components of the strain tensor. Stresses are determined 

by the thermoelastic strains according to the Duhamel-Neumann Law and could be written for the 

plane-stress state [2]: 
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where λ , µ  are Lame parameters, α  is the coefficient of linear thermal expansion. 

Within the framework of problem under consideration the radial and angular stresses must 

satisfy the equilibrium equation. Also corresponding values of the strains must satisfy to the 

continuity condition: 

( ) ( ) .,
,, rrrrrr rddr ϕϕϕϕ σσ ==          (6) 

The Tresca’s condition is selected as the yield criteria [6]: 

),(2},,max{ Tkrrrr =− ϕϕϕϕ σσσσ         (7) 

where )(Tk  is the yield strength at the corresponding temperature. For further calculations, we 

assume the simple linear relation ))((=)( 00 TTTTkTk pp −− , where 0k  is the yield strength at the 

ambient temperature and 
pT  is the melting point. 

Solution 

Both the analytical solution [7] and the computational algorithms are existing for the heat 

equation (3) with boundary conditions (2). We assume that the temperature distribution is known. 

The solution of the equilibrium equation (6) with boundary conditions (1) for the problem of 

thermoelasticity [6] has the form: 
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Increasing of the temperature gradient leads to the satisfaction of the yield criteria (7) on the 

edge of the plate at the time pt : 

.2krr =− ϕϕσσ            (9) 

At the time ptt >  there is the plastic flow region Rrta <<)(1 , where )(1 ta  is the elastoplastic 

border. According to the associated flow rule the incompressibility condition follows from (9): 

.0,0 ==+ zzrr ppp ϕϕ           (10) 

The stresses in the plastic region could be found by integrating the system (6), (9): 
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Using the assumption (4), (10) and the Duhamel-Neumann Law (5) we obtain the differential 

equation for displacements in case of plastic strains existence: 
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Integrating the equation (12) we found:  
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Note that the function of plastic deformation (13) doesn’t depend on integration constants. 

In the elastic deformation region )(0 1 tar <≤  stress-strain state is determined by the relations 

(8) obtained previously with an accuracy to the new integration constants which together with the 

constants in the plastic region require its definition. For this it’s needed to solve the system of linear 

equations in the form of boundary conditions (1) and continuity conditions of the radial stresses and 

displacements on the elastoplastic border )(1 ta  which is determined by the condition 0),( 1 =taprr . 

Solution for integration constants has the form: 
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During the temperature field alignment, the non-reversible strains in the neighborhood of 

elastoplastic border continue increase whereas on the edge its rate becomes equal to zero: 

.0),(, =
=Rrutrr trp           (15) 
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Relation (15) corresponds to the beginning of materials unloading, i.e. deformation process in 

which the yield condition (9) ceases to be satisfied. At the time utt >  the unloading region 

Rrta ≤≤)(2  exists. Displacements and stresses were obtained by solving of equation of 

equilibrium (6) taking into account irreversible strains [2]: 
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where )(rP  is the plastic strain captured at the given time on the unloading border which is defined 

by relation (15). 

The stress–strain state in the plastic flow region )()( 21 tarta <≤  and the thermoelastic 

deformation region )(0 1 tar <≤  is determined by the previously obtained relations with accuracy 

to the new integration constants. These constants with the constants in (16) were found from the 

system of linear equations describing the continuity of stresses and displacements on the regions 

boundaries. 

The function )(rP  could be represented as the envelope of functions ),( trprr  (13) with a 

parameter t . For the different values 2a  we found approximation )( 2at  from the numerical 

solution of the equation 0),( 2, =tap trr . This approximation is an inverse function of the unloading 

boundary )(2 ta and hence ))(,()( 2atrprP rr= . 

Results and discussion 

The parameters corresponding to copper were used for calculations [8]: 
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The solution was found for different values of parameter x  (heating rate) in (2). The plastic flow 

does not appear at small values of x  and small temperature gradient. The appearance of the plastic 

flow in the neighborhood of the plate edge was observed with increasing of parameter x . 

Temperature stresses decrease and unloading region appears in the temperature gradient alignment. 

The unloading border eventually overtakes the elastoplastic border. In case of high values of x  

after the complete unloading of material, the condition (9) with the opposite sign in front of the 

yield point is satisfied on the edge of the plate. This fact means the development of plastic flow 

when the plastic deformation increases in the opposite direction. Thereby value decreasing of the 

residual strain was accumulated during heating process. The occurrence of repeated plastic flow is 

caused by high residual stresses generated as a result of temperature equalization and also 

significant decrease of the yield point. 

The thermal stresses at the moment of the material unloading are presented on Fig. 1. 
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Figure 1. The residual stresses distribution. The plastic flow border 1a  and 

the unloading border 2a  are marked by vertical dashed lines. 

Note that the level of stresses is independent of the current temperature and determined by the 

temperature gradient level. Consequently, the distribution of stresses at complete heating of the 

plate to a maximum temperature coincides with the stress field at complete cooling. 

Conclusion 

The problem of unsteady thermal action on the thin circular plate has been considered. This 

physical process has been mathematically proposed as a quasi-static process of the uniform thermal 

expansion of the plate. Generalized Prandtl-Reuss thermoelastoplastic model was used. The effect 

of non-stationary temperature gradient on the residual stresses field formation was investigated in 

condition of dependence of the yield stress on temperature. The resulting system was analytically 

integrated. The border of irreversible deformation domain and unloading domain were computed. 

The level of the residual stresses was calculated.  
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