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Abstract—We consider the calculation of the entropy of an Ising ferromagnet with nonmagnetic impuri-
ties distributed at random over the lattice sites or bonds. The Ising magnet on the Bethe lattice is ana-
lyzed. On such a lattice, the situations with a random nonmagnetic dilution over the sites and bonds are
indistinguishable. For calculating the entropy, the magnetization determined in the pseudo-chaotic
approximation is used. In this approximation, we obtain the entropy as a function of the temperature,
the concentration of magnetic atoms, and the external magnetic field. It is found that in zero external
field, the system is frustrated in the sense that the ground-state entropy differs from zero. The value of
this entropy is determined for concentrations magnetic atoms below as well as above the percolation
threshold.
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1. INTRODUCTION

This study is devoted to the calculation of the free
energy and entropy of a diluted Ising magnet on the
Bethe lattice. The Bethe lattice is an infinite graph
without closed routes, in which each node is con-
nected with coordination number q by other nodes
[1]. On such a lattice, the Ising model can be defined
by placing the Ising “spin” that takes values of +1
or –1 in each node. Each pair of adjacent spins i
and j is connected with Hamiltonian term Jijij
that simulates the exchange interaction, Jij being
preset constants. When all Jij are identical and posi-
tive, it is possible to construct the exact solution for
arbitrary q [1].

If we now replace some of the spins by nonmag-
netic atoms distributed in the lattice at random with-
out a correlation, we obtain the model of a magnet
diluted over the sites; if, however, nonmagnetic
impurities are located on lattice bonds and block the
exchange interaction on the given bond, we obtain
the model of the magnet diluted over the bonds [2,
3]. For the Bethe lattice, the models with dilution
over sites and bonds are formally indistinguishable
[4]. The exact solution for the Ising model with dilu-
tion can be obtained for q = 2 (1D chain) [5]; how-
ever, for an arbitrary q, the exact solution to the prob-
lem does not exist.

In our previous publications [4, 6, 7], we pro-
posed an approach to analysis of the properties of
diluted magnets with nonmagnetic impurities, which
is based on the following considerations. Instead of

assuming from the very outset that the impurities are
distributed in the lattice at random, we consider a
magnet in which magnetic atoms and impurity atoms
can move and are in thermodynamic equilibrium.
The energy of such a system is determined not only
by the orientation of magnetic moments, but also by
the distribution of impurity atoms over lattice sites.
Therefore, the Hamiltonian of a certain model of a
magnet with mobile impurities consists of the terms
connected with the exchange interaction of magnetic
atoms as well as the terms associated with the inter-
atomic interaction in the crystal lattice; the equilib-
rium distribution of impurity atoms in this case
depends on parameters characterizing both these
interactions. Then it is possible to choose for each
value of temperature, external magnetic field, and
concentration (fraction) b of magnetic atoms in the
system the values of the interatomic interaction
parameters so that the equilibrium distribution of
impurity atoms is as close as possible to the random
distribution [4, 6, 7]. For the criterion of closeness of
the impurity atom distribution to the random distri-
bution, we can use, for example, the equality to zero
of the correlation in the location of impurity atoms
for two nearest sites, which forms the basis of the
pseudo-chaotic approximation used in this study. In
this approximation, we calculate the free energy and
entropy of a diluted Ising magnet on the Bethe lattice
and draw conclusions concerning possible frustrated
states in this system.

ORDER, DISORDER, AND PHASE TRANSITION
IN CONDENSED SYSTEM
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2. FREE ENERGY AND ENTROPY 
OF A DILUTED ISING MAGNET

In accordance with the principles of statistical
physics and thermodynamics, the total free energy of a
thermodynamic system is given by [1, 8]

(1)

where k is the Boltzmann constant, T is the absolute
temperature, and Z is the partition function of the sys-
tem. Knowing the free energy as a function of tem-
perature, we can express internal energy U and entropy
S as [8]

(2)

The Ising model is a simple and frequency used
model of a magnetic system [1]. In this model, a mag-
netic atom is represented by variable  taking values of
+1 and –1 (so-called Ising spin), which is localized in
the position of this atoms (lattice site). For the Ising
model on an arbitrary lattice, we have

(3)

Hamiltonian (, H) of the system depends on
external field H and on configuration  of Ising spins,
and the summation in expression (3) is performed over
all such configurations. For the model with the pair
interaction, we have

(4)

The first summation in this expression is per-
formed over all ordered pairs of spins, while the sec-
ond summation is carried out over all lattice spins, Jij
being the energy of the exchange interaction of the ith
and jth spins. For the Hamiltonian of this type, the
total magnetization of the system is

(5)

where Mi = i is the thermodynamic mean of the ith
spin (i.e., local magnetization of the ith site). Let us
calculate the free energy of the system using the argu-
ments analogous to those in [1]. For a very strong
external field (i.e., for H  ∞), the largest contribu-
tion to sum (3) comes from the term in which all spins
i = +1. In this limit, we have

(6)

Here, N is the number of lattice sites. Taking into
account asymptotic equality (6), assuming that all
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Mi  1 for H  ∞, and integrating relation (5), we
obtain

(7)

Differentiating this expression with respect to T, we
obtain, in accordance with relation (2), the entropy of
the system:

(8)

We assume that only the spins of the nearest sites
are interacting, while the exchange interactions con-
stants are Jij = J for the nearest neighbors and are equal
to zero in all remaining cases. Then

where  is the coordination number averaged over the
lattice. For a simple lattice with coordination number
q, we obviously have  = q for a pure magnet. In the
case of an uncorrelated nonmagnetic dilution over
sites or bonds,  = qb, where b is the concentration of
magnetic atoms or bonds [4].

Dividing now expressions (7) and (8) by NkT and
introducing specific (per magnetic atom) free energy
f = F/N, entropy s = S/N, and magnetization

we obtain

(9)

(10)

Here, K = J/kT and h = H/kT.
Expressions (9) and (10) imply that if average mag-

netization M as a function of temperature, magnetic
field, and concentration of magnetic atoms or bonds is
known, we can find the free energy and entropy.

3. BETHE LATTICE AND THE PSEUDO-
CHAOTIC APPROXIMATION

It was shown in our previous publications [4, 6, 7]
that the approximate value of the magnetization of a
diluted Ising magnet on a lattice with coordination
number q can be determined using expression
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where  can be determined from the following equa-
tion:

(12)

It turns out [4] that approximation (11) for a pure
magnet (b = 1) is the exact solution for the Ising model
on the Bethe lattice, while for b < 1, it can be treated as
the “pseudo-chaotic” approximation for the Ising
model with a nonmagnetic dilution on the Bethe lat-
tice [4]. The pseudo-chaotic approximation can be
obtained from the solution of the problem with mobile
nonmagnetic impurities by imposing the additional
condition of zero correlation in the location of impu-
rities in neighboring lattice sites [6]. The situations of
dilution over sites and bonds on the Bethe lattice are
indistinguishable; therefore, b can be treated as the
concentration of magnetic atoms as well as the proba-
bility that the bond with neighboring sites is not rup-
tured.

In expressions (11) and (12), we introduce the fol-
lowing notation:

Then expressions (11) and (12) take form

(13)

or M = ∂/∂w, where

Equations (13) can be written in the form of a single
equation in magnetization M:

(14)

where  = e–2x.

In deriving Eqs. (13) or (14), we have assumed that
the mean value of spin (local magnetization) is the
same for all inner lattice sites and is equal to M in the
thermodynamic limit. In other words, magnetic sub-
lattices are not formed in the system. This means that
either the ferromagnetic exchange interaction exists in
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the system (i.e., K > 0), or K < 0, but external field H
is large enough to prevent the formation of sublattices
at any temperature.

To specify the domain of applicability of Eq. (14),
we consider the phase diagram of the ground state
(T = 0) of a diluted Ising magnet on the Bethe lattice
with coordination number q (Fig. 1).

Passing to the limit T  0 in expression (14), we
find that M  1 for H > 0 and J > –H/q (domain I in
Fig. 1) and M  1 for H < 0 and J > H/q (domain II in
Fig. 1). Therefore, in domains I and II, the ground
state of the system is ferromagnetic. The boundary of
these domains (line 1 in Fig. 1) is the zone in which
ferromagnetic phase transitions occur. Analysis of
Eqs. (13) shows [4] that for T  1 and b < bc = 1/(q – 1),
M = 0 in line 1. For b > bc, i.e., for the concentration
of magnetic atoms, which exceeds the percolation
threshold of the Bethe lattice, the system acquires
spontaneous magnetization M0, which can be deter-
mined from equation

(15)

Function M0(b) is represented graphically in Fig. 2
(curve 1). At T > 0, spontaneous magnetization
appears for a concentration exceeding the value of
bK = bc(1 + )/(1 – ) = bccoth(K) [4] (curves 2 and 3
in Fig. 2).

In domain III in Fig. 1, the ground state of the sys-
tem is not ferromagnetic, which, as noted above, rules
out the application of Eqs. (13) or (14) in this domain.
At the boundary between domains I and III (line 2 in
Fig. 1) at T  0, magnetization M tends to value
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Fig. 1. Diagram of states of a diluted Ising magnet on the
Bethe lattice.
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where y can be determined from equation

(16)

Function (b) is shown graphically in Fig. 3
(curve 1). For q = 2 and b = 1 (i.e., for the 1D Ising
chain without nonmagnetic dilution), Eq. (16) gives
the result coinciding with that obtained in [9]. For T >
0, the magnetization on line 2 in Fig. 1 decreases
monotonically upon an increase in concentration b as
well as in temperature T (curves 2 and 3 in Fig. 3); i.e.,
neither concentration nor temperature phase transi-
tions occur in this region.

4. RESULTS OF CALCULATION

Let us now calculate the free energy and entropy of
a diluted Ising magnet on the Bethe lattice using their
expressions (9) and (10) in the pseudo-chaotic
approximation. In relation (9), we pass to variable x,

(17)

using relation dx = dw – dz = dw –
(arctanh(M))'dM, we obtain
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Using equality w – x = arctanh(M), we can finally
write
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For b = 1, this expression can be reduced to

which coincides (after a passage to the corresponding
variables) with the result obtained in [1] for a pure
magnet on the Bethe lattice. Since specific free energy
f for T  0 coincides with specific energy u0 of the
ground state, we obtain from relation (18)
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Evaluating the limit in this expression, we can show
that in domains I and II (see Fig. 1) and on their
boundary 1, we have
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Fig. 2. Spontaneous magnetization of a diluted Ising ferro-
magnet on the Bethe lattice (q = 4) as a function of the
concentration of magnetic atoms (or bonds): (curve 1)  =
0; (2)  = 0.15, and (3)  = 0.35 ( = exp(–2K)).
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i.e., the ground-state energy coincides with the mini-
mal possible energy umin per atom. In [10], the quanti-
tative measure of frustration, which is defined as

(20)

was used, where umax = –umin. Therefore, at all internal
points of domains I and II and line 1 on the phase dia-
gram (see Fig. 1), measure (20) equals zero. It will be
shown below, however, that the entropy on line 1 dif-
fers from zero at T  0 if b ≠ 1. On lines 2 and 3 of the
diagram, we obtain, using relation (19),

which, in accordance with relation (20), gives

(21)

Thus, in accordance with this criterion, the system
turns out to be frustrated at boundaries 2 and 3 of the
diagram in Fig. 1, and relation (21) assumes the max-
imal value equal to 1/3 for a pure magnet (b = 1).

We can now obtain the entropy of the diluted mag-
net by differentiating free energy (19) with respect to
temperature or directly by formula (8):

Passing to variables x and K and considering that

we obtain
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Therefore, the specific entropy of a diluted magnet
can be calculated as

(23)

where

It follows from relation (23) that at all internal
points of domains I and II on the phase diagram (see
Fig. 1), the entropy vanishes at T = 0.

For H = 0 (x = 0), parameter w equals zero if

In this case, the entropy is given by

If, however, b > bK, the entropy as a function of the
concentration of magnetic atoms can be calculated
using expressions (13) and (23) as follows:

     ( , ) 1 ln(2) ,
2

s x K b I
qk

     
 

     

( sinh(2 ) )(1 ) tanh( ) ( )
cosh(2 )

((1 ) ln(1 ) (1 ) ln(1 )).
2

b w w KI b w w n
w

M M M M

  
 

(1 ).
(1 )K cb b b

  

        

(0, ) 1 ln(2)
2

ln( )ln(1 ) .
2 1

s K qb
k

qb

   (0, ) ( )1 ln(2) ( ),
2

s K qb w qI w
k

Fig. 4. Entropy of a diluted Ising ferromagnet on the Bethe
lattice (q = 4) in zero external field as a function of concen-
tration of magnetic atoms (bonds): (curve 1)  = 0; (2)  =
0.15, and (3)  = 0.35 ( = exp(–2K)).
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Figure 4 shows the curves describing the specific
entropy (in the units of k) as a function of the concen-
tration of magnetic atoms (bonds) at different tem-
peratures. Curve 1 is the entropy of the ground state
(T = 0). Curves 2 and 3 are the entropies for the values
of temperature parameter  = exp(–2J/kT) equal to
0.15 and 0.35, respectively. For b = 0, when the system
is a paramagnet in zero external magnetic field, the
entropy at any temperature is equal to ln(2), while for
b > 0, it decreases monotonically with increasing b. At
T > 0, the entropy as a function of concentration b
exhibits a discontinuity of the first derivative for b = bK
(curves 2 and 3 in Fig. 4). At T = 0, these is no such a
discontinuity (curve 1 in Fig. 4).

In accordance with criterion (20), on line 1 of the
diagram of state (see Fig. 1), the system is not frus-
trated. However, the authors of [11] believe that the
state in which the entropy differs from zero at T = 0
can be treated as frustrated. If we follow this criterion,
the system on line 1 (see Fig. 1) is frustrated for b < 1.

Let us consider the entropy on lines 2 and 3 of the
diagram in Fig. 1. On line 2, condition K + x = 0 holds.
Taking this condition into account, we find the limit
(23) for T  0, which after some transformations can
be written in form

(24)

where y can be determined from Eq. (16). Figure 5
shows graphically function (b) (curve 1).
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For b = 1 and q = 2, we have

which coincides with the result of calculation in [9], in
which the transfer matrix method has been used for a
1D spin chain. The same figure show the concentra-
tion dependences of the entropy for nonzero values of
temperature (curves 2 and 3 in Fig. 5).

5. CONCLUSIONS
Thus, the account for nonmagnetic dilution into

the pseudo-chaotic approximation [4] makes it possi-
ble to calculate not only the concentration depen-
dence of the magnetization (see Figs. 2 and 3), but also
the entropy (see Figs. 4 and 5) and the free energy of a
diluted magnet on an arbitrary Bethe lattice. Analysis
of the concentration dependence of the entropy shows
that for J > 0 and H = 0 (line 1 in the diagram in Fig. 1)
and at zero temperature, the entropy differs from zero,
decreases with increasing b, and has no discontinuity
of the first derivative with respect to b (curve 1 in
Fig. 4) in the entire concentration range. However, at
a nonzero temperature, there exists a discontinuity of
the first derivative for b = bK (i.e., for the value of b
corresponding to the emergence of spontaneous mag-
netization).

Our calculations show (see Fig. 4) that even at T =
0 (curve 1), the entropy on line 1 does not vanish,
which, according to some authors [9, 11], can be
treated as the criterion of frustration of the system. It
should be noted, however, that the nonzero value of
the ground-state entropy in zero external field in this
case is of the “paramagnetic” origin: upon the non-
magnetic dilution, isolated spin “islands” appear in
the system, which can change their spontaneous mag-
netization in the absence of a change in energy.
According to frustration criterion (20) [10], which is
equal to zero on line 1 for any b, the state of the system
in this region cannot be treated as frustrated.

If J < 0 (antiferromagnetic exchange interaction),
but the external field is H = –qJ (line 2 on the diagram
in Fig. 1), the system is frustrated in the sense of a
nonzero value of the residual entropy (curve 1 in
Fig. 5) as well as in the sense of criterion (20). In this
domain, there are neither concentration phase transi-
tions nor temperature phase transitions.
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