

Молодёжная тематическая конференция «Окружающая среда и устойчивое развитие – общая ответственность и забота» возможные места для установки контейнеров для сбора раздельного мусора. Из этого следует, что уроки, направленные на внедрение экологизации дают отклик у обучающихся, стимулируют их на возможные варианты развития экологии в городской среде, ученики хотят быть экологически грамотными и проявляют в этом интерес, изучают дополнительные источники по альтернативным ресурсам потребления. Такой результат дал лишь один экологический урок. Это подтверждает, что уроки экологии в школьной программе могут быть востребованы и принесут свои позитивные результаты в области сохранения природных ресурсов.

Экологическое образование — трудный и продолжительный процесс обучения молодых людей пониманию проблем в экологии и путсй их решения. Именно благодаря этому образованию люди создают невероятные способы защиты и помощи нашей природы и планеты. Важно постоянно проводить в школах мероприятия по экологической тематике, чтобы ученики осознавали свою связь с живым миром и понимали все последствия загрязнения планеты.

Подводя итог, можно смело говорить о том, что регулярное проведение классных часов и мероприятий, а также введение уроков «экологии» в школьную программу, в том числе практических, способствует формированию экологической культуры и воспитанию ответственности по отношению к природе.

Библиографический список

- 1. Захарова О.А. Приоритетные направления современного образования-экологическое воспитание // Молодой ученый. № 2, 2018. С.32-36.
- 2. Иринина О.И., Суханова К.А. Экологичная посуда и упаковка для продукции массового питания: реалии и перспективы // Экономика и сервис, 2020 Т.14 № 3. С. 65-75.
- 3. Самарина О.И. Актуальные проблемы экологического образования и воспитания школьников(методические рекомендации) // Образование в современной школе. М., 2019. С. 8-14.
- 4. Экология России Режим доступа: https://ecologyofrussia.ru/stories/prepodavanie-ecologii-v-shkolakh/
- 5. Эко посуда из кукурузного крахмала Режим доступа: https://geo-vita.com/produkciya-iz-kukuruznogo-kraxmala/

Примечание:

РУ- разрезоуправление;

РУ «Новошахтинское»-угледобывающее предприятие, расположенное в поселке Новошахтинский;

МБОУ СОШ N2-муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа номер 2.

Переработка промышленных отходов с получением функциональных материалов

Балахнин И.А.^{1,2}, Ярусова С.Б.^{1,2*}, Гордиенко П.С.¹, Козин А.В.³, Данилова С.Н.⁴

¹Институт химии Дальневосточного отделения Российской академии наук, Россия, Владивосток

²Владивостокский государственный университет экономики и сервиса, Россия, Владивосток

³Дальневосточный федеральный университет, Россия, Владивосток ⁴Северо-Восточный федеральный университет имени М.К. Аммосова, Россия, Якутск

*e-mail: yarusova 10@mail.ru

Научный руководитель: к.х.н., с.н.с. Института химии ДВО РАН, зав. базовой кафедрой ЭЭПХТ ВГУЭС Ярусова С.Б.

Современное состояние экономики России характеризуется довольно низким коэффициентом использования материально-сырьсвых и энсргетических ресурсов, в результате чего образуются значительные объемы отходов, оказывающих негативное влияние на окружающую среду. Во многих случаях отходы представляют собой ценное сырье, сопоставимое по концентрации содержащихся в них полезных компонентов с первичным сырьем и материалами, а в ряде случаев и превосходящее их. Доля вторичного сырья в суммарном сырьевом балансе страны составляет лишь единицы процентов. При этом масштабы образования отходов позволяют говорить о «второй геологии» - науке об антропогенных ресурсосберегающих отходах. В настоящее время повторное использование отходов является приоритетным и выгодным направлением, а наличис эффективных отечественных технологических способов их извлечения ориентируют государство на ускоренное решение проблемы вовлечения в промышленное использование российского техногенного сырья [1, 2].

В вопросах переработки, утилизации и захоронения промышленных отходов решающая роль принадлежит государству, которое должно инициировать развитие инвестиционной деятельности, направленной на переработку отходов, с привлечением, как частного капитала, так и федерального бюджета, и бюджетов субъектов РФ [3, 4].

В данной работе приведены результаты исследований по переработке пекоторых видов промышленных отходов с получением различных функциональных материалов. Данные работы были выполнены в Институте химии ДВО РАН совместно с Владивостокским государственным университетом экономики и сервиса, Дальневосточным федеральным университетом. Северо-Восточным федеральным университетом.

В Институте химии ДВО РАН в течение ряда лет проводятся исследования, связанные с разработкой физико-химических основ комплексной переработки техногенных отходов, таких как борогипс, фосфогипс, кремнегель и отходы бурения нефтяных скважин.

Авторы данной работы обобщили проведенные исследования и представили их результаты в сводной таблице.

Таблица 1 Предлагаемые способы переработки некоторых промышленных отхолов и получаемая из их осново промышленных

отходов и получаемая на их основе продукция					
Отходы	Фазовый	Режим обработки	Продукты	Литера	
Fonoruma	С-СО ЭН О		переработки	тура	
Борогипс (отходы	CaSO ₄ ·2H ₂ O	Обработка	- аморфный	[5]	
производс		гидродифторидо	диоксид кремния		
тва борной		м аммония при	(«белая сажа»);		
тва оорнои кислоты;		130-180°С в	=		
РФ.		течение 3 ч	плавикошпатовый		
Приморск		III	концентрат Са Г2		
ий край)		Щелочная	- гидросиликаты	[6,7]	
ни краи)		обработка при 20-220°С в	кальция;		
		70-220°С в течение 1-12 ч	- сорбенты;		
		течение 1-12 ч	- добавка в бетон;		
			- калийные		
		Щелочная	удобрения		
		обработка при	- волластонит;	[7–9]	
		20-220°С и	- добавка в		
		последующий	полимерные		
		обжиг продукта	композиционные		
		при 900-1200°C в	материалы;		
		течение 1-3 ч	- добавка в бетон		
Фосфогип	Фосфогипс -	Щелочная	- EMBROOMERING	[10]	
с (РФ,	CaSO ₄ ·2H ₂ O;	обработка смеси	- гидросиликаты кальция;	[10]	
Мурманск	кремнегель –	фосфогипса и	- волластонит		
ая	аморфная	кремнегеля	- волластонит		
область);	фаза,	(гидроксид калия			
кремнегел	AlF ₃ ·3H ₂ O	квалификации			
ь (Литва)		«ч.д.а») в			
		автоклаве при			
		температуре 180			
		°С в течение 1 ч			
		с последующим			
		обжигом			
		продукта при			
		900-1200°С в			
		течение 1-3 ч			
Отходы	SiO ₂ , Fe ₃ O ₄ ,	Предварительны	- добавка в бетон	[11]	
бурения	CaSiO ₃ ,	й обжиг в		1	
нефтегазов	Al ₂ (SiO ₄)O	муфельной печи			
ых		в интервале			

скважин (РФ, Тюменска я область)	температур 600- 900°С	
---	--------------------------	--

Таким образом, даже на примере предлагаемых разработок, видно, что вовлечение в хозяйственный оборот техногенных месторождений позволит решить ряд важных проблем минерально-сырьевого комплекса страны и улучшить экологическую ситуацию.

Большинство промышленных предприятий способно на модернизацию, создание дополнительных производств, в том числе на основе вторичного сырья. Для этого необходимо консолидировать усилия власти, собственников предприятий и научного сообщества с целью создания благоприятных условий для этого процесса и разработки адекватной стратегии их развития [12].

Библиографический список

- 1. Фаюстов А.А. Утилизация промышленных отходов и ресурсосбережение. Основы, концепции, методы: монография. Москва; Вологда: Инфра-Инженерия, 2019.272 с.
- 2. Чантурия В.А., Козлов А.П., Шадрунова И.В., Ожогина Е.Г. Приоритетные направления развития поисковых и прикладных научных исследований в области использования в промышленных масштабах отходов добычи и переработки полезных ископаемых // Горная промышленность. 2014. № 1 (113), С. 54-57.
- 3. Савон Д.Ю., Абрамова М.А. Применение инновационных методов ресурсосбережения при переработке и утилизации отходов в производственной сфере // Горный информационно-аналитический бюллетень (научно-технический журнал). 2015.С. 276-284.
- 4. Кусрасва О.С. Формирование механизма управления рециклингом отходов промышленных предприятий // Автореф. дисс. канд. экон. наук. Санкт-Петербург: Изд-во СПбГМТУ, 2012. 18 С.
- 5. Гордиенко П.С., Крысенко Г.Ф., Ярусова С.Б., Медков М.А., Буравлев И.Ю., Курявый В.Г., Шлык Д.Х., Буравлева А.А. Получение «белой сажи» из отходов борного производства // Фундаментальные исследования и прикладные разработки процессов переработки и утилизации техногенных образований: труды V Конгресса с международным участием и Конференции молодых ученых «ТЕХНОГЕН-2021». Екатеринбург: УрО РАН, 2021. С.183-186. **DOI:** 10.34923/technogen-ural.2021.20.31.001.
- 6. Yarusova S.B., Gordienko P.S., Yudakov A.A., Azarova Yu.A., Yashchuk R.D. Kinetics of the sorption of heavy-metal ions by a sorbent obtained from boric acid production waste // Theoretical Foundations of Chemical

Engineering. 2016. Vol. 50. № 5. pp. 841-845. **DOI:** 10.1134/S0040579516050250

- 7. Yarusova S.B., Gordienko P.S., Kozin A.V., Zhevtun I.G., Perfilev A.V. Influence of synthetic calcium silicates on the strength properties of fine-grained concrete // IOP Conf. Series: Materials Science and Engineering.2018. Vol. 347. 012041 DOI:10.1088/1757-899X/347/1/012041.
- 8. Yarusova S.B., Gordienko P.S., Sharma Y.C., Perfilev A.V., Kozin A.V. Industrial waste as raw material for producing synthetic wollastonite in Russia // International Journal of Environmental Science and Development. 2017. Vol.8⊾№ 1. pp. 1-5. **DOI:** 10.18178/ijesd.2017.8.1.910
- 9. Гордиенко П.С., Ярусова С.Б., Козин А.В., Ивин В.В., Силантьев В.Е., Лизунова П.Ю., Шорников К.О. Материал на основе синтетического волластонита и его влияние на функциональные свойства мелкозернистого бетона // Перспективные материалы. 2017. № 9. С.40-48.
- 10. Ярусова С.Б., Гордиенко П.С., Козин А.В., Данилова С.Н., Балахнин И.А. Многотоннажные отходы на основе гипса сырье для получения волластонита // Технологии переработки отходов с получением новой продукции: материалы III Всероссийской научно-практической конференции с международным участием, г. Киров, 24 ноября 2021 г. Киров: Вятский государственный университет, 2021. С.88-91.
- 11. Ярусова С.Б., Сковпень А.В., Козин А.В., Иваненко Н.В., Гордиенко П.С. Использование отходов бурения нефтегазовых скважин в мелкозернистом бетоне // Актуальные вопросы химической технологии и защиты окружающей среды: сб. материалов VIII Всероссийской конференции, г. Чебоксары, 16–17 апреля 2020 г. Чебоксары: Изд-во Чуваш. ун-та, 2020. С.120-121.
- 12. Ярусова С.Б., Гордиенко П.С., Балахнин И.А. Научный подход к решению проблемы утилизации промышленных отходов // Наука, меняющая жизнь : материалы национального научного форума магистрантов, аспирантов и молодых учёных (г. Владивосток, 29 мая 2021 г.). Владивостокский государственный университет экономики и сервиса. Владивосток : Изд-во ВГУЭС, 2021. С. 372-375.

Кинетика извлечения ионов ${\rm Sr}^{2+}$ сорбентом из промышленных отходов

Балыбина В.А.^{1,2}, Ярусова С.Б.^{1,3*}, Гордиенко П.С.¹, Паротькина Ю.А.¹, Нехлюдова Е.А.^{1,3}

¹Институт химии Дальневосточного отделения Российской академии наук, Россия, Владивосток

 2 Дальневосточный федеральный университет, Россия, Владивосток

³Владивостокский государственный университет экономики и сервиса, Россия, Владивосток

*e-mail: yarusova_10@mail.ru

Научный руководитель: к.х.н., с.н.с. Института химии ДВО РАН, зав. базовой кафедрой ЭЭПХТ ВГУЭС Ярусова С.Б.

Из радиоактивных изотопов стронция наибольший вклад в загрязнение окружающей среды вносят ⁸⁹Sr и ⁹⁰Sr. Короткоживущий изотоп ⁸⁰Sr (T-50,5 дней) прослеживается в окружающей среде на начальном этапе техногенной аварии. ⁹⁰Sr характеризуется большим периодом полураспада (T-28 лет) и является одним из основных компонентов радиоактивного загрязнения природных экосистем и биосферы в целом. В водные объекты данные радионуклиды попадают путем осаждения на их поверхности или при смыве дождевыми и снежными осадками с территории водосбора, при непосредственном сбросе загрязненной воды или при протечках загрязненной воды в контур технического водоснабжения АЭС. После поступления в водные объекты искусственные радионуклиды распределяются в толще воды, сорбируются поверхностью дна, диффундируют в толщу грунтов, поступают в растения и животные организмы [1, 2].

В научной литературе приведены результаты исследований большого числа неорганических сорбентов для извлечения стронция из водных сред, в числе которых синтетические силикаты кальция [3–5]. В работе [3] исследованы сорбционные свойства материалов на основе силикатов кальция по отношению к ионам Sr²⁺. Установлено, что максимальная сорбционная емкость силикатного сорбента, полученного из техногенных отходов (борогипса), из растворов без солевого фона достигает 2.5 ммоль/г. При исследовании кинетики сорбции стронция при соотношении Т:Ж, равном 1:50, и температуре 20°С, было установлено, что через 10 мин степснь извлечения ионов Sr²⁺ достигает более 50%. Однако влияние температуры на кинетику не исследовали.

Цель данной работы — автоклавный синтез силикатсодержащего сорбента из отходов производства борной кислоты (борогипса) и изучение влияния температуры на кинетику сорбции ионов Sr^{2+} .

Сорбент получали путем автоклавной обработки борогипса. Режимы синтеза и состав исходного сырья и получаемого продукта описаны в работе [6].

Опыты по кинетике сорбции проводили в статических условиях при соотношении твердой и жидкой фаз, равном 1:400, и температурах 20, 40 и 60°С из водных растворов хлорида стронция (SrCl₂·6H₂O) без солевого фона с начальной концентрацией ионов $\mathrm{Sr^{2^+}}\ 1.22\$ ммоль/л (pH=6.6) при перемешивании на магнитной мешалке RT 15 power (IKA WERKE, ФРГ) в течение 1, 5, 15, 30 мин.

Содержание ионов Sr²⁺ в исходном растворе и фильтратах после сорбции определяли методом атомно-абсорбционной спектрометрии на двулучевом спектрометре SOLAAR M6 (Thermo Scientific, США) по аналитической линии 460.7 нм. Предел обнаружения ионов стронция в водных растворах составляет 0.002 мкг/мл. Погрешность определения стронция в растворах составляет 10%.

Сорбционную емкость (A_c , ммоль/ Γ) сорбента рассчитывали по формуле:

$$A_{c} = \frac{(C_{xes} - C_{y})}{m} \cdot V \tag{1}$$

где $C_{\text{исх}}$ – исходная концентрация ионов Sr^2 в растворе, ммоль/л; C_p — равновесная концентрация ионов Sr^{2+} в растворе, ммоль/л; V — объем раствора, л; m — масса сорбента, r.

Степень извлечения ионов $Sr^{2+}(\alpha, \%)$ рассчитывали по формуле:

$$\alpha = \frac{\left(C_{acx} - C_p\right)}{C_{acx}} 100\% \tag{2}$$

На рисунке приведены кинетические кривые сорбции стронция при температурах 20, 40 и 60°С из водных растворов хлорида стронция без солевого фона.

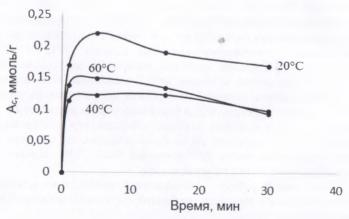


Рис. 1. Кинетические кривые сорбции ионов Sr³ силикатным сорбентом из борогипса

Как видно из представленных кинетических кривых, при различных температурах наблюдаются определенные различия в величине сорбционной емкости образцов: при увеличении температуры наблюдается снижение сорбционной емкости материала. Если при температуре 20°C степень извлечения стронция составляет более 50%, то при увеличении температуры не превышает 20-30%. Для объяснения наблюдаемого эффекта необходимы дальнейшие исследования, однако можно предположить, что такие закономерности связаны с компонентами сорбента, в частности, с наличием частично непрореагировавшего сульфата кальция, растворимость которого при повышении температуры снижается. Двуводный гипс CaSO₄·2H₂O является основным компонентом отходов производства борной кислоты.

Полученные исследования показывают возможность решения двух экологических задач: утилизация отходов и создание материала для очистки водных растворов.

Библиографический список

1. Strontium Contamination in the Environment // The Handbook of Invironmental Chemistry / Editors *Pankaj Pathak, Dharmendra K. Gupta.* – Springer, Cham. 2020. Vol. 88. 250 p. https://doi.org/10.1007/978-3-030-15314-4

2. Бахвалов А.В., Лаврентьева Г.В., Сынзыныс Б.И. Биогеохимическое поведение ⁹⁰Sr в наземных и водных экосистемах// Междисциплинарный научный и прикладной журнал «Биосфера». 2012. Т. 4. № 2. С. 206-216.

- 3. Ярусова С.Б., Гордиенко П.С., Крысенко Г.Ф., Азарова Ю.А. Сорбция ионов Sr²⁺ силикатными материалами синтетического и техногенного происхождения // Неорганические материалы. 2014. Т. 50. № 6. С. 1-7. **DOI:** 10.7868/S0002337X14060207
- 4. Гордиенко П.С., Ярусова С.Б., Крысенко Г.Ф., Мелконян Р.Г., Чередниченко А.И., Сушков Ю.В. Сорбция ионов Sr²⁺ материалом на основе силиката кальция // Техника и технология силикатов. 2012. Т.19. № 1. С. 2-7.
- 5. Ярусова С.Б., Панасенко А.Е., Сомова С.Н., Терминов С.А., Гордиснко П.С., Земнухова Л.А., Паротькина Ю.А. Сорбенты на основе силикатов кальция // Материалы V Всероссийской научной конференции (с международным участием) «Актуальные проблемы теории и практики гетерогенных катализаторов и адсорбентов». 30 июня—2 июля 2021 г. Иваново: Материалы конференции. ФГБОУ ВО Иван. гос. хим.-технол. унт. Иваново. 2021. С. 204-206.
- 6. Ярусова С.Б., Панасенко А.Е., Харченко У.В., Сомова С.Н., Гордиенко П.С., Земнухова Л.А. Синтез сорбента на основе техногенных отходов и возможности его использования для очистки водных сред от различных поллютантов // Материалы Всероссийской научной конференции с международным участием молодых ученых и специалистов «Инновационные технологии защиты окружающей среды в современном мире», 18-19 марта 2021 г. Казань: Изд-во КНИТУ, 2021. С.542-545.