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Abstract. In recent years, machine learning (ML) methods have been 
widely used in various subject areas. Depending on which area we 
interfere, the cost of collecting big data and preparing it for further analysis 
can vary greatly. Medicine is one of those costly areas for data collection, 
which is often represented by unbalanced classes, combined with their total 
number limitation. The model accuracy largely depends on the initial data 
amount, which was used for the model training. The final predictive value 
of the model could be worsening in case of datasets imbalance and 
insufficient volume of the minority class. Oversampling methods are used 
to solve this problem, with the leading role of the SMOTE algorithm and 
its varieties. Previous researches have shown that oversampling algorithms 
have varying efficiency degrees, depending on the applying ML method. 
This paper represents the results of hypothesis testing about possibility of 
synthesized data usage in term of predicting the atrial fibrillation 
development and in-hospital mortality for patients with coronary heart 
disease after coronary artery bypass grafting. For model’s development the 
following ML methods were used: multivariate logistic regression, 
stochastic gradient boosting and random forest. Data generation was 
performed by several varieties of the SMOTE algorithm. The analysis has 
shown that their usage for dataset extension in order to predict fatal and 
non-fatal cardiovascular events does not guarantee forecast quality 
improvement and in most cases leads to retraining of the models. 

Keywords: Synthetic data, Oversampling methods, Machine learning, 
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1 Introduction 

Machine learning (ML) becoming an increasingly popular approach for the 
medical services development solving the problems of prediction in areas of 
disease development, their complications, and treatment outcomes [18]. The 
effective ML models development is associated with increased access to a large 
amount of medical data. Withal, one of the key problems of their application for 



predicting the development of fatal and non-fatal events is the classes imbalance 
of the forecast end point and the insufficient amount of minority class data 
[2,8,12,16]. This situation is notably often recorded during prediction of surgical 
operations lethal outcomes, postoperative complications and development of 
other adverse events. Fatal events in cardiac surgery are happen relatively rarely 
(1-10%), which leads to a significant dataset’s imbalance and insufficient 
prediction accuracy [11,13,14]. 

Various methods can be used to solve this class imbalance in medical research. 
One of them is balanced sampling, in which the number of records for each class 
becomes approximately the same. Several methods of balanced sampling have 
been developed, the use of which for the medical data analysis is constantly 
expanding [19,21]. At the same time, the question of this approach (when 
synthetic data is used to train predictive models) validity, remains insufficiently 
explored. Population researches are less sensitive to individual patients’ 
characteristics, while the tasks of personalized medicine require taking into 
account the concrete clinical and functional state of patients. 

This research aims to conduct a comparative effectiveness analysis of balanced 
sampling methods usage for predicting adverse events after cardiothoracic 
surgeries using ML methods. 

2 Related works 

In recent years, dozens of balanced sampling methods have been developed, 
which can be divided into 2 groups: data reduction (undersampling) and data 
augmentation (oversampling). The data reduction approach for a minority class 
can be applied in cases where the resulting dataset contains enough data for 
analysis [1,15]. Data augmentation methods based on objects of a minority class 
are best suited to a situation where the latter has a small volume [22]. An increase 
in the number of samples of a smaller class allows you to save all the information 
and develop a more balanced model, but the risks of its overfitting require 
additional researches on the validity of data synthesis [22]. In prediction problems 
in clinical medicine, where a small minority class size is most often observed, it 
is attractive to synthesize data using several methods. The basic method includes 
SMOTE, which generates a new synthetic example, placing it in the feature space 
between each example and its k-nearest neighbors in a minority class [6]. The 
working principle of Polynom-fit-SMOTE is to use polynomial curves to generate 
new synthetic examples that more accurately model the distribution of data in a 
minority class [9]. The CURE-SMOTE algorithm combines CURE clustering and 
SMOTE methods. First, the data is clustered using the CURE algorithm, and then 
the SMOTE algorithm is applied to generate synthetic samples for the minority 
class in each cluster [17]. To generate synthetic SOMO samples by calculating 
the neighborhood size for each sample and generating synthetic analogs by 
random perturbation inside their neighborhoods [7]. ProWSyn generates new 
synthetic samples using various techniques: copying and modifying existing 
objects, finding boundary examples and modifying them, and noise reduction 
using bagging [3]. The LoRAS algorithm is designed to generate synthetic 
analogues by approximating the main data set [4], while the ProWRAS algorithm 
integrates LoRAS and ProWSyn [5]. 



3 Methods and materials 

This paper analyzes the effectiveness of data augmentation methods 
(oversampling) usage for prediction of the adverse events development for 
patients with coronary heart disease (CHD) after coronary bypass surgery 
(CABG). The research was performed on the dataset “Prognostic assessment of 
the clinical and functional status of patients with coronary artery disease after 
CABG”*, which includes information on 999 patients who underwent in GBUZ 
"Primorsky Regional Clinical Hospital No. 1" in Vladivostok, a planned isolated 
CABG was performed. Two tasks were considered: the development of 
postoperative atrial fibrillation and the prediction of in-hospital mortality (IHM) 
as a complication of CABG. To solve the first task, 2 groups of individuals were 
identified, the first of which included 173 (19.5%) patients with newly diagnosed 
atrial fibrillation in the postoperative period, the 2nd - 716 (80.5%) patients 
without this complication. 110 patients with preoperative atrial fibrillation were 
excluded from the dataset. To solve the second task, 2 groups of people were 
identified among the examined cohort. The 1st of them included 63 (6.3%) 
patients who died in the hospital during the first 30 days after CABG (IHM), the 
2nd included 936 (93.7%) patients with a favorable outcome of the operation. The 
selection and validation of predictors, as well as the prediction of endpoints, were 
previously performed by the authors of this work [10,20]. 

Based on the researches analysis results, the following oversampling methods 
were selected: SMOTE, Polynom-fit-SMOTE, ProWRAS, CURE-SMOTE, 
SOMO and ProWSyn, which were described as most effective [3,5]. Each of these 
methods has been shown to be best suited for certain ML models [5]. To predict 
IHM and the development of atrial fibrillation, ML methods were used: 
multivariate logistic regression, random forest, and stochastic gradient boosting. 
Cross-validation of the models was performed using the stratified K-Fold method 
for 10 samples. To assess the quality of the models, the following metrics were 
used: area under the ROC curve (AUC), sensitivity (Sen) and specificity (Spec), 
which were evaluated by averaging over 10 validating samples. In order to test 
the hypothesis about the possibility of using synthetic data for training models, 
the value of correctly predicted objects of class 1 (PPV) was estimated. 

The research design included several stages (Fig. 1). For both prognostic tasks 
in the analyzed dataset, pools of potential predictors and dichotomous endpoints 
were determined. All predictors were additionally tested for the significance of 
differences in the comparison groups. For further research, only those of them 
were used that confirmed their significance as predictors of predicted events. 
From the dataset, based on a random stratified sample, 30% of objects were 
selected that had an end point equal to 1 (patients who died within 30 days after 
surgery - IHM and patients with atrial fibrillation). Data from this cohort of 
patients were not involved in sample synthesis, training, or cross-validation of 
models. They were used only for the final testing of models trained and validated 
on a combination of real and synthesized data by 6 oversampling methods. The 
remaining data (70% of objects with an endpoint of 1 and 100% of objects with 
an endpoint of 0) were used for training and cross-validation.  
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Fig.1. Research Design. 

At the next stage, oversampling methods were applied to 70% of patients with an 
endpoint of 1 to obtain balanced datasets that included real and synthetic data 
generated based on them. This made it possible to form 6 combined datasets for 
2 prognostic tasks. Each dataset was used for training and cross-validation using 
the stratified K-Fold method of three ML models. All models were trained with 
parameter and hyperparameter fitting to maximize AUC. 

At the final stage of the research, all models, including those that were 
developed only on real data and those that were trained using combined samples, 
were tested on 30% of the previously separated data with an end point equal to 1. 
To do this, all models were trained on datasets of real and combined data. To 
evaluate the forecast results, we used the PPV metric, which is calculated as the 
ratio of predicted units to their total number 1 in the testing sample. 

4 Results 

The research considered 2 tasks on the same dataset, which differ in the size of 
the minority class. In the first task (forecasting atrial fibrillation), it was about 
20%, in the second (forecasting IHM) - 6% of the data. To predict atrial 
fibrillation, a dataset of real clinical data was used, including indicators of 121 
patients from class 1, 716 patients from class 0, and 595 “synthetic patients”, 
generated from 121 “real” patients. For the final testing, the indicators of 52 
patients from class 1 were used, which were isolated from the real dataset before 
data synthesis. The most significant predictors of the Mann-Whitney test and the 
Chi-Square test for continuous and categorical variables, respectively, were 
selected as input data. The most significant predictors included: the age of 



patients, the concentration of glucose in the blood, electrocardiogram parameters 
(PQ, QRS, QT), the size of the right atrium and the presence of chronic heart 
failure III-IV functional class. The results of training, cross-validation and final 
testing are shown in several tables (Table 1–3). 

Table 1. Multivariate logistic regression quality metrics for predicting atrial fibrillation. 

Oversampling method Sensitivity Specificity AUC PPV of 30% (class 1) 

Without oversampling 0.66 0.64 0.68 53% 

SMOTE 0.67 0.63 0.7 58% 
ProWSyn 0.65 0.66 0.7 56% 
SOMO 0.66 0.64 0.68 53% 
CURE-SMOTE 0.91 0.81 0.91 53% 
Polynom-fit-SMOTE 0.88 0.81 0.91 49% 

ProWRAS 0.94 0.86 0.93 48% 

Averaged quality metrics for cross-validation of prognostic models of atrial 
fibrillation after CABG based on multivariate logistic regression showed a 
significant advantage of the ProWRAS data synthesis method compared to using 
only real data (AUC=0.93 vs. 0.68, respectively). At the same time, the forecast 
quality of the model trained on synthesized data was lower than that of the model 
trained on real data (PPV=53% vs 48%). A slight increase in the forecast accuracy 
of the model trained on the combined data was demonstrated by the model using 
the data synthesized by the SMOTE and ProWSyn methods during training 
(PPV=58%, 56%). 

Table 2. Random Forest model quality metrics for atrial fibrillation prediction. 

Oversampling method Sensitivity Specificity AUC PPV of 30% (class 1) 
Without oversampling 0.61 0.62 0.67 53% 

SMOTE 0.8 0.79 0.86 31% 
ProWSyn 0.79 0.82 0.87 27% 
SOMO 0.65 0.61 0.67 56% 
CURE-SMOTE 0.93 0.97 0.98 19% 
Polynom-fit-SMOTE 0.94 0.91 0.98 21% 

ProWRAS 0.94 0.93 0.97 29% 

The random forest model for predicting atrial fibrillation on real data provided a 
low AUC (0.67) according to the results of cross-validation (see Table 2). At the 
same time, a significant increase in accuracy up to AUC=0.98 was observed on 
the combined sample when using the Polynom-fit-SMOTE and CURE-SMOTE 
synthesis methods. Testing models on real data showed a low generalizing ability 
of random forest models trained on combined data (PPV=21% and 19% versus 
53% for the real dataset). The SOMO method provided a slight improvement in 
the quality of the forecast (PPV=56%), while maintaining other quality metrics 
(AUC=0.67). The remaining 5 synthesis methods led to significant overfitting and 
reduced the generalizing ability of predictive models. 



Table 3. Stochastic Gradient Boosting quality metrics for atrial fibrillation prediction. 

Oversampling method Sensitivity Specificity AUC PPV of 30% (class 1) 

Without oversampling 0.61 0.62 0.67 53% 

SMOTE 0.8 0.79 0.86 31% 
ProWSyn 0.79 0.82 0.87 27% 
SOMO 0.67 0.6 0.72 58% 
CURE-SMOTE 0.92 0.89 0.97 9% 
Polynom-fit-SMOTE 0.92 0.9 0.97 17% 

ProWRAS 0.91 0.9 0.96 34% 

Stochastic gradient boosting showed similar quality metrics and generalizing 
ability to random forest. Training and cross-validation had the best quality scores 
when using the Polynom-fit-SMOTE data synthesis method (AUC=0.97). At the 
same time, the final testing of 5 out of 6 synthesis methods demonstrated 
overfitting of the models (PPV=9%-34%). The model trained on real data 
provided the correctness of the estimate at the level of 53%. Only the SOMO 
method (PPV=58%) showed the best results with identical quality metrics on 
cross-validation (see Table 3). 

To predict IHM, the same dataset was used, including indicators of 58 patients 
from class 1, 561 patients from class 0, and 503 “synthetic patients” generated 
from 58 “real patients”. For the final testing, data from 17 patients from class 1 
were used, which were isolated from the real dataset before data synthesis. The 
most significant predictors were selected, which included: age of patients, 
ejection fraction of blood from the left ventricle, end diastolic and systolic volume 
of the left ventricle, pulmonary artery pressure, sizes of the left and right atrium, 
blood parameters: hemoglobin, leukocytes, total protein, urea, prothrombin index, 
thrombin time, creatinine clearance, neutrophils; patients body weight, the 
duration of the QRS interval on the ECG, the presence of heart failure and angina 
III or IV functional classes, chronic kidney disease, recent myocardial infarction 
and extracardiac arteriopathy. The results of training, cross-validation and final 
testing are shown in the following tables (Table 4-6). 

Table 4. Multivariate Logistic Regression quality metrics for IHM prediction. 

Oversampling method Sensitivity Specificity AUC PPV of 30% (class 1) 
Without oversampling 0.6 0.75 0.7 76% 
SMOTE 0.83 0.81 0.91 58% 
ProWSyn 0.86 0.8 0.9 58% 
SOMO 0.6 0.75 0.69 76% 
CURE-SMOTE 0.91 0.81 0.91 64% 
Polynom-fit-SMOTE 0.88 0.81 0.91 58% 
ProWRAS 0.9 0.86 0.93 58% 

The analysis showed that the use of synthetic data for training a multivariate 
logistic regression model did not lead to an improvement in the quality of the 
forecast with any oversampling method. Cross-validation quality metrics were 



identical, and generalizability indicators showed performance degradation across 
all methods except SOMO, where they were comparable to baseline results 
(PPV=76%). 

Table 5. Random Forest quality metrics for IHM prediction. 

Oversampling method Sensitivity Specificity AUC PPV of 30% (class 1) 

Without oversampling 0.75 0.73 0.82 58% 
SMOTE 0.9 0.89 0.96 47% 
ProWSyn 0.88 0.89 0.96 41% 
SOMO 0.75 0.74 0.82 58% 
CURE-SMOTE 0.93 0.97 0.98 5% 
Polynom-fit-SMOTE 0.94 0.91 0.98 11% 
ProWRAS 0.94 0.93 0.97 35% 

Random forest models showed similar multivariate logistic regression sensitivity 
to the use of synthetic data with a significantly (<10%) imbalanced sample (see 
Table 5). The best results of random forest models were obtained using only real 
data and a combined dataset synthesized by the SOMO method with data 
(PPV=58%). 

Table 6. Stochastic Gradient Boosting quality metrics for IHM prediction. 

Oversampling method Sensitivity Specificity AUC PPV of 30% (class 1) 
Without oversampling 0.68 0.71 0.77 64% 
SMOTE 0.9 0.91 0.96 41% 
ProWSyn 0.89 0.9 0.96 29% 
SOMO 0.68 0.71 0.77 64% 
CURE-SMOTE 0.92 0.89 0.97 41% 
Polynom-fit-SMOTE 0.92 0.9 0.97 29% 
ProWRAS 0.91 0.9 0.96 41% 

The stochastic boosting method provided better generalization abilities compared 
to random forest, but the quality metrics based on the results of cross-validation 
were identical. The best generalization ability was recorded using real data or 
those synthesized by the SOMO method (PPV=64%). 

5 Discussion 

The present research was devoted to the effectiveness analysis of synthetic data 
usage for predictive models development in clinical medicine on unbalanced 
samples. The design of the research ensured the correctness of hypothesis testing 
about the ability of models trained on synthetic (combined) data to predict adverse 
cardiac surgery events. The authors separated 30% of the real data of the minority 
class from the processes of data synthesis, training and cross-validation of 
models. In this paper, we analyzed the possibilities of 6 data synthesis methods 
and 3 ML methods for developing predictive models, which were used to solve 2 



binary classification problems with different ratios of the minority and majority 
classes. 

Previous researches have shown that each of the oversampling methods is best 
suited for certain ML models, which is weakly consistent with the results of our 
research [5]. We have not found a significant increase in the quality of the forecast 
with any oversampling method. Moreover, with a significant amount of synthetic 
data compared to real ones (the ratio is 10), most of the oversampling methods, 
except for SOMO, showed a decrease in the generalizing abilities of ML models. 
The SOMO model did not improve the forecast quality. With smaller ratios of the 
amount of synthetic and real data (a ratio of around 3), there was a slight 
improvement in the generalizing ability of the multivariate logistic regression 
model built on data synthesized by the SMOTE method. Random Forest and 
Stochastic Gradient Boosting models had similar results on SOMO-generated 
data. 

It is also important to note that the cross-validation results obtained from 
combined samples synthesized by all methods except SOMO cannot be 
considered correct, as they showed clear signs of overfitting. The latter were 
showing greater results, depending of the ratio of the synthesized data to real 
one’s volume. The research is limited by clinical data and the methods considered, 
and should not be translated into images or time series and other data synthesis 
methods. 

6 Conclusion 

The research results indicate that there is no effect of increasing the accuracy of 
ML models from the use of 6 data synthesis methods in the clinical medicine 
prognostic tasks, particularly, in cardiac surgery. This indicates the requirement 
of new synthesis methods development, the use of which will increase the 
predictive properties of ML models. 
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