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A B S T R A C T

In the framework of the random interaction fields method, the behavior of magnetic susceptibility is described in
ferromagnetic materials, antiferromagnetic materials, and spin glasses. Phase diagrams for systems with com-
peting exchange interactions are built. The conditions for the occurrence of different types of magnetic ordering
are defined. The ferromagnetic Curie points for different numbers of neighboring atoms are calculated.

1. Introduction

Spin glasses belong to the so-called atomic-disordered systems. The
physics of such systems has actively been discussed lately [1–8].
Nowadays, many materials with spin-glass ordering are known. These
materials include crystalline and amorphous substances, but most of
them are diluted alloys. The occurrence of spin-glass ordering in these
materials suggests that the reason for the absence of magnetic ordering
is the decay of the percolation cluster into clusters of finite size. The
short-range exchange interaction is absent in such clusters. The alter-
nating sign of the Ruderman-Kittel-Kasuya-Yosida interaction or dif-
ferent signs of the exchange interaction for different pairs in amorphous
alloys can be another reason.

It is natural to use methods based on the theory of random functions
to describe disordered systems, because in these sy stems the local
magnetization is a random function [1,2]. There are several models for
describing spin glasses: the Edwards-Anderson model and the model of
infinite radius proposed by Sherrington and Kirkpatrick [9]. There is
also a heuristic model of the spin-glass state based on the results of
numerical simulations [10].

The random interaction fields method enables us to simplify the
description of spin glasses [11–21]. This method has the simplicity of
the molecular field theory but at the same time enables us to determine
the boundary of the transition from the state of magnetic ordering to
the state of spin glass, at least for diluted magnets.

The main results of the random interaction fields method are as
follows:

1. The distribution function has the form of a normal distribution, but
unlike in the Edwards-Anderson model, the variance and the ex-
pectation are interrelated and are determined by the law of inter-
action. There is a critical concentration of interacting atoms.
Magnetic ordering is absent when the concentration is lower than
the critical concentration.

2. The method can be applied to systems in which the interaction be-
tween particles is described by different signs [22,23].

3. It enables us to investigate concentration magnetic phase transitions
[23–25].

4. There is a possibility to account for variation in the Curie point by
reason of the diffusion of magnetic particles [26].

In this article, we use the random interaction fields method to in-
vestigate magnetic susceptibility in ferromagnetic materials, anti-
ferromagnetic materials, and spin glasses.

2. The random interaction fields method

2.1. Distribution density of random fields

We consider a system of exchange-interacting (“magnetic”) atoms
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that are randomly distributed with a concentration p in a nonmagnetic
medium over the lattice sites. It is assumed that the magnetic moments
of the atoms are oriented along a certain Ozaxis (the Ising model ap-
proximation). Let us combine the origin with one of the magnetic
atoms. Then, if we know the field =φ φ m r( , )k k k k , created at the origin
by an atom with a magnetic moment mk and located at the point with
coordinates rk, we can calculate the distribution density of random
interaction fields W H( ) as

∬ ∑ ∏= ⎛

⎝
⎜ − ⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟W H δ H φ d dm r m r m r( ) , Φ , ,

k
k k k

k
k k k k

(1)

where − ∑δ H φ( )k k is the distribution density of the field H with a
known distribution of particles on the coordinates rk and magnetic
moments ∑ φm m r, ( , )k k k k k is the total field from these particles, and

m rΦ( ,k k) is the density of the distribution of particles on the co-
ordinates and magnetic moments.

If the magnetic moments of atoms do not depend on their co-
ordinates, then

= f τm r r mΦ ( , ) ( ) ( ).k k k k k (2)

Here, f r( )k and τ m( )k are the density of the distribution of particles on
the coordinates and magnetic moments, respectively. For crystalline
ferromagnetic materials, the density of the distribution of particles on
the coordinates has the form

= −f δr r r( ) ( ),k k k,0 (3)

where rk,0 are lattice coordinates.
In the framework of the Ising model, the distribution density τ m( )k

of atoms with the same magnetic moment = mmk 0 can be determined
as follows:

= + − − + −τ α δ θ β δ θ π p δ m pδ m mm( ) [ ( ) ( )][(1 ) ( ) ( )],k k k k k k k 0 (4)

where θk is the angle between mk and the axis Oz α, k is the relative
probability of the spin being “up” ( =θ 0k ), and = −β α1k k is the re-
lative probability of the spin being “down” =θ π( )k . In the field H, the
equilibrium values of αk and βk are determined as follows:
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The problem of determining m is significantly simplified if we re-
place the values of αk and βk with their thermodynamically and con-
figurationally averaged values in Eq. (5). Then, the magnetic moment
has the form

∫= < > − < > = ⎡
⎣

⎤
⎦

< > < >M α β m H
kT

W H α β dHtanh ( , , ) .0

(6)

2.2. Approximation of the “normal distribution” and the “rectangular”
function

From Eqs. (1), (3), and (4) it follows that the characteristic function
∫=A ρ W H iρ H dH( ) ( )exp{ } for a crystalline magnetic material can be

represented as
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(8)

If we confine ourselves to the first three terms of the expansion of an
exponential in a series, then we can obtain the following equation:
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Hence, the distribution density of random interaction fields can be
defined as

= ⎧
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where the values of H0 and B2 are determined via concentration p φ, k,
and = < > − < >M α β , as follows:
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This implies summation under the condition that all magnetic mo-
ments are directed upwards. Note that if we limited ourselves to the
linear terms of the expansion, the distribution density would be a delta
function of the form −δ H MH( )0 .This function corresponds to the
molecular field approximation.

From Eqs. (5) and (6), we can obtain the equation determining the
dependence of the average magnetic moment on the temperature and
concentration of the magnetic atoms. It has the form

∫= ⎡
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⎤
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W H M dHtanh ( , ) ,0

(12)

where W H m( , ) is the density of distribution over the fields of inter-
action. This density can be determined from Eqs. 10,11.

A substantial simplification of Eq. (12) can be achieved by replacing
the distribution function (10) with the rectangular function:
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Such a replacement can be justified only in the region of small m,
that is, the region of phase transitions, where the error in the calcula-
tions becomes insignificant [11].

3. Magnetic ordering and phase diagram

If there are two sublattices, then in the external field h the corre-
sponding equations can be written as follows:
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Let us consider these relations for =h 0. Defining in the zero
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approximation the value of M2 by the value of M1 and the value of M1 by
the value of M2 and substituting these in Eqs. (16) and (17), we obtain
the equations for the average magnetic moments in the following form:
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Because the difference in the right-hand side cannot be negative, we
obtain the conditions for the occurrence of a nonzero average magnetic
moment for both sublattices:
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Based on the Eqs. (20) and (21), we can distinguish different cases
of magnetic ordering. These can arise when the inequalities written
below are fulfilled:

1. The absence of interaction between the sublattices
( = =H H 0012 021 ). Each of the sublattices has a ferromagnetic or-
dering when the temperature is lower than the Curie point:
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2. The absence of interaction within the sublattices ( = =H H 0011 022 ).
There is a negative exchange interaction between the sublattices.
We obtain a ferromagnetic ordering when the temperature is lower
than the critical temperature:
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3. The absence of interaction within the sublattices ( = =H H 0011 022
and = = = =B B B H H H,1 2 012 021 ). There is a negative exchange
interaction between the sublattices. We obtain an antiferromagnetic
ordering:
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Let us consider the case of ferromagnetic ordering. We set the
concentration of magnetic atoms to =p 1. We also restrict our con-
sideration to the vicinity of the critical point (near the phase transition).
Then, taking into account Eq. (11), the moments of the distribution
function can be determined as
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k

k
k
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(25)

If we restrict ourselves to direct exchange ( =φ Jk ) for the neigh-
boring atoms with coordination number z, the condition

⎡⎣ ⎤⎦ >tanh 1H
B

B
T

0 leads to the determination of the critical concentration
=p z2/c . When the concentration is lower than the critical concentra-

tion, ordering is impossible. In this case, the percolation cluster is
broken, and the spin glass appears. If there are competing interactions,
we can use a model given in Ref. [27]. Fig. 1 shows the phase diagram
obtained as a result of a numerical experiment for a magnetic state of a
cubic magnetic material with stochastically mixed exchange bonds J
and K =λ K J( / ) on the plane λ ν( , ), where ν is the concentration of
antiferromagnetic exchange bonds K [27].

There are three areas of magnetic ordering:

1. The ferromagnetic region is characterized by the predominant di-
rection of elementary magnetic moments. In this case, the average
value of the moment at the node is nonzero, and the system has a
nonzero total magnetic moment in a finite temperature range.

2. The antiferromagnetic region corresponds to the ability to split the
entire system into two sublattices. The average value of the moment
at the node in each sublattice is also nonzero. However, the total
magnetic moment of the entire system, in contrast to the ferro-
magnetic case, is zero as a result of the antiparallel orientation of the
magnetic moments of these sublattices.

3. The spin glass region is characterized by the impossibility of se-
parating the correct sublattices, that is, it exhibits complete sto-
chastic spatial orientation of the magnetic moments of atoms.
Obviously, the total magnetic moment of the magnet in the spin
glass state is zero.

For amorphous magnetic materials, because of the different dis-
tances between the neighboring atoms, the interaction φk can be re-
presented as:

= − −φ K ν z K νzΣ (1 ) ,k 1 2 (26)

where K1 is the positive exchange integral, ν is the concentration of
exchange-interacting antiferromagnetic atoms, z is coordination num-
ber,and (− K2) is the negative exchange integral (introduced in such a
way that >K 02 ).

If we substitute the law of interaction (26) into the equations for the
moments H0 and B, we get

Fig. 1. The phase diagram obtained as a result of a numerical experiment for a
magnetic state of a cubic magnetic material with stochastically mixed exchange
bonds J and K =λ K J( / ) on the plane λ ν( , ), where ν is the concentration of
antiferromagnetic exchange bonds K [27].
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Then, the ratio of the moments H
B

0 , after simple mathematical
transformations, has the form
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where =x K
K

2
1
.

The ratio H B/0 allows us to differentiate the type of magnetic or-
dering as follows:

1. If >H B/ 10 , this is a ferromagnetic ordering.
2. If <H B/ 10 and >H B/ 00 , this is a ferromagnetic spin glass state.
3. If <H B/ 00 and > −H B/ 10 , this is an antiferromagnetic spin glass

state.
4. If < −H B/ 10 , this is an antiferromagnetic ordering.

We construct our phase diagram (Fig. 2) for systems with a com-
peting exchange interaction ν versus x using the ratio H B/0 (A is an
antiferromagnetic ordering, B is an antiferromagnetic spin glass state, C
is a ferromagnetic spin glass state, and D is a ferromagnetic ordering).

The results given in Ref. [27] are in good agreement with ours re-
sults, taking into account the sign of λ (in our case,

= = =J K K K λ x, ,1 2 ).
The difference between Figs. 2 and 1 is as follows: In Fig. 2, the x

axis corresponds to the positive value of the ratio K K/2 1 ; therefore, the
axis is directed to the right as compared with Fig. 1. In addition, Fig. 1
was obtained under the assumption of a random distribution of positive
and negative bonds and our figure under the assumption of a random
distribution of positively and negatively interacting nodes. Based on the
theory of percolation, we know that a certain difference exists between
these cases. Therefore, we believe that the correspondence between
Figs. 2 and 1 is qualitative.

4. Magnetic susceptibility

Using the system of Eqs. (14, 15), we can determine the magnetic
susceptibility of a ferromagnetic material in an external field h:
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If the external field is equal to zero, then we have a formula for
determining the magnetic moment in dimensionless variables
( = =k m1, 1):
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Further, we solve the equation by the method of successive ap-
proximations ̃= +M M m0 . Considering only linear terms m with

≪h 1, we obtain the following equations:
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At >T Tc:
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Formulas (35) and (37) make it possible to determine the depen-
dence of the magnetic susceptibility χ on temperature T for various
values of ν (Figs. 3 and 4).

Fig. 3 shows the dependence of the susceptibility χ on temperature

Fig. 2. Phase diagram for systems with competing exchange interaction ν(x),
where A is an antiferromagnetic material, B is antiferromagnetic spin glass, C is
a ferromagnetic spin glass, D is a ferromagnetic material.

Fig. 3. Dependence of the magnetic susceptibility χ on temperature T
( = = =ν z T0, 4, 3.21? ). Ferromagnetic region.

V. Belokon, et al. Journal of Magnetism and Magnetic Materials 512 (2020) 167051

4



T for a ferromagnetic ordering. For = =ν T0, 3.21c ; for
= =ν T0.23, 1.094c . As ν increases to 0.24 , the Curie point shifts to the

left. The curves χ1 and χ2 tend to infinity at the Curie point. For <T Tc,
the susceptibility is determined by formula (35), but this formula is
applicable only near the point Tc. For >T Tc, formula (37) is used. At
high temperatures, the ferromagnet and ferromagnetic spin glass or-
derings become a paramagnetic ordering.

Fig. 4 shows the dependence of the susceptibility χ on temperature
T at =ν 0.4 and =ν 0.6 for ferromagnetic spin glass. This follows from
the condition that <H B B T/ tanh[ / ] 10 . As can be seen from the figure,
the susceptibility is finite.

Note that formula =
−

χ
1 1 tanh

tanh

H
B

B
T

B
B
T

1

0

1 at →B 0 (i.e., the molecular field

theory) tends to equation = −T Hχ
1

0
1

. But the value of H0 is the Curie
point for the molecular field theory.

However, the Curie point Tc in the theory of random interaction
fields corresponds to the condition <T Hc 0. The value of H0 has the
meaning of the “aramagnetic” Curie point Tpm, at which the short-range
order is destroyed (for =T Tc, the long-range order is destroyed).

Both the ferromagnetic Curie point Tc and the paramagnetic tem-
perature Tpm can be measured experimentally. The ferromagnetic Curie

point can be determined from the equation ⎡
⎣

⎤
⎦

=tanh 1z
z

z
T2
2
c

at =p 1.
By solving this equation numerically for Tc, we can determine the Curie
ferromagnetic point Tc for different values of z.If we combine the
random interaction fields method and the Bethe-Peierls method, it is
necessary to use the additional factor −z

z
1 when we calculate the Curie

point [21].
We convert the obtained values of the ferromagnetic Curie point Tc

into dimensional units. The results of calculating the Curie temperature
Tc and the paramagnetic temperature Tpm, and the comparison of these
temperatures with experimental data [28], are represented in Table (1),
in which BP denotes the Bethe-Peierls method and MRF denotes the
random interaction fields method.

Using the example of three substances Ni, Co, and Fe [28], the
difference between the paramagnetic point and the Curie point is ob-
tained experimentally (column 4), by means of the Bethe-Peierls
method (column 5) and with our method (column 6). As shown in the
table, the results we obtained are closer to the experimental

temperature difference compared with the Bethe-Peierls method. For
comparison, the data are taken from Vonsovsky’s monograph since it
refers to the fundamental manuals on magnetism.

The magnetic susceptibility in the region of the antiferromagnetic
ordering can be determined if we consider the two-sublattice system
16–17 in the external field h. Then, considering only linear terms with

̃ ̃=m m1 2 at ≪h 1, we get

̃ ̃+ =
− −

+ − −

( )
( )

m m
h

2
tanh tanh tanh

1 tanh tanh tanh
,

h
B

B
T

J M

BT
B
T

B
T

J
B

B
T

J M

BT
B
T

B
T

1 2

3

3

2
0
2

2

3
0
2

2 (38)

=
− −

+ − −

( )
( )

χ 2
tanh tanh tanh

1 tanh tanh tanh
,B

B
T

J M

BT
B
T

B
T

J
B

B
T

J M

BT
B
T

B
T

1

1 3

3

2
0
2

2

3
0
2

2 (39)

where

Fig. 4. Dependence of the magnetic susceptibility χ on temperature T ( =ν 0.4
=ν 0.6). Ferromagnetic spin glass region.

Table 1
Paramagnetic and ferromagnetic Curie points.

Substances °T K,pm ex, °T K,c ex, − °T T K,pm ex c ex, , − °T T K,pm c BP( ) − °T T K,pm c MRF( )

Ni ( =z 12) 650 631 19 108 38
Co ( =z 12) 1428 1403 25 238 83
Fe ( =z 8) 1101 1043 58 172 99

Fig. 5. Dependence of the magnetic susceptibility χ on temperature T ( =ν 0.8
and =ν 0.92). Antiferromagnetic spin glass region.

Fig. 6. Dependence of the magnetic susceptibility χ on temperature T ( =ν 0.93
at =T 0.6405N and =ν 1 at =T 1.605N . Antiferromagnetic region.
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=
−

−

( )
( )

M
3 tanh 1

tanh tanh
.

J
B

B
T

J
BT

B
T

B
T

0
2

33
2 (40)

In the absence of a spontaneous magnetic moment =M( 0)0 at
>T TN , the magnetic susceptibility for an antiferromagnetic material

will be determined as follows:

=
+

χ
2 tanh

1 tanh
,B

B
T

J
B

B
T

2

1

(41)

Fig. 5 shows the dependence of the susceptibility χ on temperature
T at =ν 0.8 and =ν 0.92 for antiferromagnetic spin glass. This follows
from the condition that <H B B T/ tanh[ / ] 10 . <H 00 . As can be seen
from the figure, the susceptibility is finite.

In the case of an antiferromagnet (Fig. 6), the curves χ1 and χ2 in-
tersect at the Neel point, and the susceptibility is determined by for-
mula (41).

At high temperatures, the antiferromagnet and antiferromagnetic
spin glass states also become a paramagnetic state, as do the ferro-
magnet and ferromagnetic spin glass states.

The dependence of the magnetic susceptibility given in Figs. 3 and 6
is in good agreement with the theoretical concepts of the behavior of
the corresponding susceptibility for the ferromagnet and antiferro-
magnet states [29,30]. If we consider spin glasses, we must consider
that the formulas given in our work suggest that equilibrium has ar-
rived and that magnetic susceptibility corresponds to the equilibrium
state. However, in reality, this equilibrium can be achieved in a very
long time. Thus, when trying to determine the magnetic susceptibility
of spin glasses for a finite time, the following circumstances should be
considered: Spin glass is a set of clusters oriented in our model partially
up and partially down. In this sense, they are similar to a macroscopic
antiferromagnet. And for a short research time, the magnetic suscept-
ibility turns out to be similar in its behavior to the magnetic suscept-
ibility of an antiferromagnet. Therefore, comparing our susceptibility
with experimental data, this should be borne in mind. All experimental
data are focused on a short research time. Therefore, in the area where
we have an antiferromagnet, spin glass can show a magnetic suscept-
ibility that is the same as an antiferromagnet in a short research time.

5. Conclusion

1. The random interaction fields method makes it possible to in-
vestigate the susceptibility of magnetic materials and separate the
temperatures of occurrence of near and far orders. In addition, it
enables us to determine the critical concentrations at which the
percolation cluster is destroyed and ordering of the cluster spin-glass
type occurs. If a ferromagnetic ordering exists, and when con-
centration p is lower than the critical concentration, the small
clusters that were formed after the breakup of the percolation
cluster retain the ferromagnetic ordering, which is destroyed at a
higher temperature (ferromagnetic cluster spin glasses). If an anti-
ferromagnetic ordering exists initially, then the small clusters,
formed after the breakup, have antiferromagnetic ordering at a
concentration p lower than the critical concentration (two equiva-
lent sublattices with opposite spin directions, antiferromagnetic
cluster spin glasses).

2. The general view of the dependence of the susceptibility on the
temperature coincides qualitatively with the curve χ T( ) given in
Ref. [27]. In particular, there is a linear dependence χ T( ) at low
temperatures.
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