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Abstract. The aim of this study was searching and validation of new obstructive
coronary arteries lesions predictors and prognostic models development for its
verification in patients with ischemic heart disease prior to invasive coronary
angiography. Research included a step-by-step algorithm for predictors selection
and validation as well as thresholds measurements with filtering and wrapping
techniques. Cross-validation of predictive models based on multivariate logistic
regression, support vector machine and random forest were made by averaging of
4 quality metrics. Based on selected predictors in continuous and categorical forms
the best developed predictive model was logistic regression models ensemble with
the following quality metrics: area under the ROC curve 0.85, accuracy - 0.80,
sensitivity - 0.82, and specificity - 0. 73, which is higher than the existing CAD
Consortium scale.
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1 Introduction

Coronary artery disease (CAD) takes one of the leading places in the morbidity and
mortality structure among majority countries of the world [1]. Thus, annual CAD death
rate is around 9,5 million people or more than 17% of all world death. Strategy of
early CAD diagnostics is used for mortality reduction and according to the clinical
recommendations of cardiological community is aimed to improve the technologies of
risk stratification and prophylactics.AQ1

Coronary insufficiency is main known mechanism of CAD development due to an
imbalance between myocardial oxygen demand and its actual delivery. The narrowingAQ2

of coronary arteries (CA) lumen by more than 50% is the most common reason for this
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condition development. The exact degree of narrowing is specified during and invasiveAQ3

diagnostic procedure – coronary angiography (ICA). The latter is the gold standard of
coronary blood flow functional anatomical status diagnostics and surgical treatment indi-
cations identification. Recently there are more and more studies indicating an increase
number of persons with non-obstructive (less than 50% of the lumen) lesions of coronary
artery (NOCAD) among patients with suspected CAD [2, 3]. Thus, hemodynamicallyAQ4

significant CA stenoses in patients with clinical signs of CAD according to the results of
ICA were detected only in 40% of cases [2]. According to the US national registry data,
among of patients with suspected CAD NOCAD occurred in 58%. Registry data from
Brazil, Finland and Switzerland describes NOCAD in 76%, 57% and 32% of patients,
respectively [4].

Despite ICA’s high diagnostic value, usage is associated with a certain risk of surgical
complications. So, ICA is described as cause of death in 0.1–0.14% of patients. ICA-
associated myocardial infarction is diagnosed in 0.06–0.07% cases. Allergic reactions to
the contrast introduction and local post-puncture vascular complications were recorded in
0.23% and 2%, respectively, cerebrovascular complications - in 0.07–0.14% of patients.

Methods for assessing the pretest probability (PTP) of obstructive coronary arteries
damage (OCAD) (before ICA) for patients with suspected CAD were firstly introduced in
routine clinical practice around 40 years ago by American cardiologists George Diamond
and James Forrester. Their article “Analysis of Probability as an Aid in the Clinical
Diagnosis of Coronary Artery Disease”, published in The New England Journal of
Medicine in 1979 were presenting the Bayesian classifier model allowing to calculate
OCAD probability for patients with suspected CAD before functional and laboratory
tests [5]. Gender, age (from 30 up to 69 years) and clinical symptoms of CAD (typical
and atypical angina pectoris, cardialgia) were described as predictors in this model
based on ICA results of 4952 patients. For several decades, the Diamond-Forrester (DF)
scale has been one of the most popular PTP OCAD methods [6]. Years after its usage
showed a significant overestimation of CAD likelihood among surveyed, especially in
the female population. In 2011 Genders TS, et al. modified the DF scale, adapting it for
modern cohort of patients with age limit extension up to 80 years [7]. For a new CAD
Consortium scale development, EuroAIM registry data of 2,260 patients from 14 Europe
and United States medical centers were used. All included subjects were complaining
chest pain, had no CAD history and were underwent ICA for its verification. Update
and expansion of PTP models showed a significant increase of predictive power. In
2012, same authors improved calculator and proposed the CAD Consortium clinical
model (base model + risk factors for cardiovascular diseases (CVD), including diabetes
mellitus (DM), hypertension (HTN), smoking, hyperlipidemia, and body mass index
(BMI)) and an extended model (clinical model + coronary calcium index according to
multislice computed tomography). The latest model showed accuracy increase based on
C-statistics indicators from 0.77 to 0.79, and the reclassification - by 35%. Advantages of
this method was proven by results of Bittencourt MS, et al. (2016) study, where straight
comparison of DF scale with two CAD Consortium models were made based on 2,274
patients clinical data [8]. Also, this study reaffirms the overestimation of CAD prevalence
among the surveyed by DF scale. Withal, both clinical and extended CAD Consortium
models provided higher prediction accuracy for OCAD detection: area under the ROC
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- curve (AUC) for DF was 0.713, and for CAD Consortium 1 and 2 - 0.752 and 0.791,
respectively. Besides, with these models, significantly more patients were attributed to
the low OCAD probability group (24.6% and 30.0% vs 8.3% - by DF), and the persons
proportion with a high OCAD risk was only 1.1% vs 18% by DF. Authors suggested
that widespread of these methods in routine clinical decisions can tremendously reduce
the need for invasive CAD diagnosis [9]. Juarez-Orozco LE, et al. (2019), developed
new method for PTP OCAD determination based on the Bayesian classifier and data
analysis of three large-scale studies results, describing patients with suspected coronary
artery disease (n = 15815, mean age 59 ± 11 years) [10]. This method was included to
the European Society of Cardiology recommendations for the diagnosis and treatment
of chronic coronary syndrome [11, 12].

Recently, modern machine learning (ML) methods are more commonly used for
predictive research in clinical cardiology, allowing to increase the forecast accuracy by
identifying non-obvious patterns. At the same time, there is only a small number of
articles where these methods were used for OCAD prediction.

The aim of this study was searching and validation of new OCAD predictors with
determination of their threshold values and prognostic models development for its pre-
test diagnostics in patients with CAD prior to ICA, based on ML methods.

2 Materials and Methods

2.1 Patient Characteristics

A prospective cohort study included 496 patients (314 men and 182 women) aged 30 to
80 years with a median of 62 years and a 95% confidence interval (CI) [60; 64], who were
proceed to the emergency cardiology department of the Vladivostok Clinical Hospital
No. 1 in 2017–2020. All patients underwent invasive ICA. Among the surveyed cohort,
2 groups were identified. The first included 345 (69.6%) patients with hemodynamically
significant coronary artery narrowing (≥50%) according to ICA results, the second
included 151 (30.4%) with NOCAD (<50%).

Before ICA patients clinical and functional status was evaluated by 29 indicators con-
taining anamnestic, anthropometric, clinical and laboratory data associated with cardio-
metabolic risk (CMR). Measurements of height (Ht), weight, waist circumference (W),
hips (H), calculation of body mass index (BMI), WH ratios (WHR) (indexed to gender),
WHt ratio (WHtR) were carried out. The levels of glucose, total cholesterol (TC), high
density lipoprotein cholesterol (HDL cholesterol) and low (LDL cholesterol) density,
triglycerides (TG), creatinine, uric acid (UA) were determined.

The indices of visceral adiposity (VAI), lipid accumulation product (LAP), athero-
genicity (AIP) were calculated using the well-known formulas [13]. The insulin resis-
tance index (IRI) was determined by the ratio of TG/HDL cholesterol [14], and the
glomerular filtration rate (GFR) was determined using the CKD EPI formula.
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4 K. Shakhgeldyan et al.

2.2 Data Processing

The end point of the study was presented by the OCAD in the binary form feature (“ab-
sence” or “presence”). Input signs - a subgroup of potential predictors was expressed
in the form of continuous and categorical variables. Filtration and wrapping methods
were used for data processing and analysis [15]. Filtration was performed by mathemat-
ical statistics, and ML methods were used as a “wrapper”. The first were represented
by the Fisher, Mann-Whitney, Chi-square tests and one-way logistic regression (LR)
with the calculation of weights for a normalized sample. The second - by ML methods:
multifactorial LR (MLR), random forest (RF) and support vector machine (SVM).

Significance of features and testing of hypotheses was confirmed by a p-value <0.05.
The quality of the models developed on training samples was assessed using a cross-
validation test procedure, by averaging 4 metrics: area under the ROC curve (AUC), accu-
racy (ACC), sensitivity (Sen), and specificity (Spec). Cross-validation was performed
using a k-fold approach on 10 stratified samples.

2.3 Study Design

The study design included 5 stages.

1. On the first, the probability of the presence of OCAD was calculated using the CAD
Consortium method [7] and its predictive value was assessed.

2. On the second stage, in order to identify potential predictors linearly related to
OCAD, 29 CMR factors were analyzed in the comparison groups. We did not use
the most significant predictor of the CAD Consortium scale (pain syndrome), which
is the most significant for diagnostics, in order to identify other, previously unused
predictors. For continuous variables, the Mann-Whitney test was used, and for cat-
egorical variables - the chi-square test. The odds ratio (OR) and their 95% CI were
assessed by the Fisher test.

3. At the third stage, using one-factor LR-models, the weighting coefficients of
individual indicators were determined.

4. At the fourth stage, based on LR results, threshold values of factors with the highest
predictive potential were identified.

5. At the fifth stage, the predictive models of OCAD were developed using the MLR,
RF and SVM. Data analysis and model development were performed in R-studio
and Python by R languages.

3 Results

During the first stage of the study, the probability of OCAD was assessed in accordance
with the CAD Consortium scale recommended by the European and American Society
of Cardiology. The quality metrics of the obtained assessment were: ACC - 0.7, AUC
- 0.75, Sen - 0.68, Spec - 0.71, which confirmed the need of more advanced models
development based on new predictors.
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Machine Learning for Assessment of Cardiometabolic Risk Factors 5

At the second stage of the study, an intergroup analysis of the factors characterizing
the clinical and functional status of patients was carried out, which showed the presence
of statistically significant differences in 15 parameters (Table 1). At the same time, the
maximum level of reliability was recorded for indicators of gender (male sex), HDLC,
AIP, and Creatinine (p-value <0.0001). The highest OR values were associated with
males (OR = 2.5) and active smoking (OR = 2.3). A less noticeable, but statically
significant likelihood of OCAD was associated with a family history of CVD (OR =
1.6). It should be noted that DM and hypertension (HTN) were recorded with the same
frequency in patients with OCAD and NOCAD. According to the preliminary analysis,
age, height, WHtR, weight and BMI of the surveyed, the concentration of glucose and
CRP, systolic (SBP), diastolic (DBP) and pulse (PAP) blood pressure also did not affect
the likelihood of OCAD.

Table 1. Patients clinical and functional characteristics (ME, 95% CI).

Parameter 1 group (OCAD),
n = 345

2 group (NOCAD),
n = 150

OR, 95% CI p-value

Age, years 62 [61;64] 62 [59;64] 0,57

Male, (%) 241 (69,9%) 72 (48,3%) 2,5 [1,6; 3,7] <0,0001

Smokers, (%) 135 (40%) 34 (23%) 2,3 [1,5; 3,7] 0,0001

Family history of
CVD, (%)

102 (30%) 32 (21%) 1,6 [1,0; 2,6] 0,048

WHR, c.u 1,08 [1,05; 1,1] 1,05 [1,0; 1,1] 0,005

TC, mmol/l 5,6 [5,5; 5,9] 5,3 [5,1; 5,55] 0,012

TG, mmol/l 1,4 [1,35; 1,6] 1,3 [1,15; 1,4] 0,005

HDLC, mmol/l 1,2 [1,2; 1,25] 1,35 [1,3; 1,4] <0,0001

LDLC, mmol/l 3,6 [3,4; 3,8] 3,3 [3,0; 3,4] 0,0003

IRI, c.u 1,2 [1,1; 1,35] 0,9 [0,8; 1,1] 0,0005

VAI, c.u 1,7 [1,4; 2,1] 1,2 [0,9; 1,6] 0,011

LAP, cm × µmol/l 49,6 [42,0; 60,3] 36,3 [30,7; 48,5] 0,04

AIP, c.u 3,55 [3,4; 3,9] 2,8 [2,4; 3,2] <0,0001

Creatinine,
µmol/ml

90 [88; 93] 79 [76; 83] <0,0001

GFR,
ml/min/1,73 m2

73,2 [71,35; 74,8] 76.9 [73,2; 82,5] 0,012

UAA, µmol/l 379 [366; 393] 338 [320; 361] 0,007

At the third stage of the study, using standardized data, univariate LR models were
constructed with the calculation of weight coefficients. This approach expands the possi-
bilities for data processing and analysis due to a more detailed assessment of the degree
and vector influence of potential predictors on the resulting variable.
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6 K. Shakhgeldyan et al.

Table 2. Patients Weights for univariate LR models for OCAD probability estimation (ME, 95%
CI).

Parameter Weights P-value

Age 0,4 [−0,7; 1,5] 0,5

Male gender 0,9 [0,5; 1,3] <0,0001

Smokers 0,8 [0,4; 1,3] 0,0002

Family history of
CVD

0,5 [0,03; 0,9] 0,04

W 2,5 [0,3; 4,9] 0,03

WHR 3,4 [1,3; 5,8] 0,0029

TC 1,9 [0,4; 3,4] 0,013

TG 3,8 [0,1; 7,8] 0,05

HDLC −3,9 [−6,3; −1,7] 0,0007

LDLC 2,1 [1,0; 3,3] 0,0003

IRI 1,6 [0,4; 2,9] 0,01

AIP 3,5 [1,9; 5,2] <0,0001

Creatinine 4,7 [2,8; 6,8] <0,0001

GFR −3,35 [-5,7; −1,1] 0,004

CRP 6,1 [1,1; 13,8] 0,06

UA 1,7 [0,3; 3,1] 0,016

According to the results of the analysis statistically significant level of weighting
coefficients took place in 13 variables (Table 2). The highest values of the weighting
factors were associated with the Creatinine level (4.7; p < 0.0001), HDLC (−3.9; p
= 0.0007) and AIP (3.5; p < 0.0001). The less valued indicators were WHR (3.4),
GFR (−3.35), LDLC (2.1), TC (1.9), IRI (1.6), male sex (0.9), smoking status (0.8) and
family history of CVD (0.5). At the same time, the weight coefficients of factors such
as age, height, WHtR, weight, SBP, DBP, PAP, the presence of hypertension, diabetes,
CRP and glucose levels, VAI and LAP were statistically insignificant. In the developed
univariate models, most of the weighting coefficients had a positive value, which indi-
cated an increase in the likelihood of OCAD in the presence of these signs or their levels
increasing. On the contrary, negative values of the weights of HDLC and GFR indicate
an increase in the risk of OCAD with a decrease in the level of these indicators.

At the fourth stage of the study, among the indicators selected at the previous stages,
using one-factor LR, their threshold values with the highest predictive potential were
identified (Table 3). To accomplish this task, indicators in a continuous form were trans-
formed into categorical ones. It is known that categorization in continuous space leads
to the loss of some information and the appearance of “quantization noise”. However, in
medical research, it is customary to operate with the concepts of norms and thresholds
that are associated with risk factors that contribute to the development of diseases and
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Machine Learning for Assessment of Cardiometabolic Risk Factors 7

their complications. Within a certain “normative” range, the values of the indicator are
not interrelated with the development of the disease, but, starting from a certain thresh-
old, this indicator can act as a risk factor for an adverse event. To confirm this hypothesis,
the threshold values of the indicators were verified, which were used for further analysis.

Table 3. The range of threshold values for potential OCAD predictors based on univariate LR-
models.

Thresholds 1 group
(OCAD),
n = 345

2 group
(NOCAD),
n = 150

OR, 95% CI p-value

Age, years
male ≥55
female ≥65

235 (68%) 84 (56%) 1,7 [1,1; 2,5] 0,01

W, cm
male ≥105
female ≥115

76 (22%) 13 (9%) 3,05 [1,15;
8,1]

0,025

WHR, c.u
Female and male ≥0,9

255 (74%) 75 (50%) 2,9 [1,5; 5,7] 0,0017

WHtR, c.u. ≥ 0,69 48 (14%) 4 (3%) 5,7 [1,25;
26,35]

0,025

TC ≥ 5,9 mmol/l 148 (43%) 43 (29%) 2,0 [1,3; 3,0] 0,001

TG ≥ 1,6 mmol/l 157 (45,5%) 48 (32%) 1,75 [1,2;
2,6]

0,006

HDLC ≤ 1,1 mmol/l 129 (37,5%) 30 (20%) 2,4 [1,5; 3,9] 0,0002

LDLC > 3,5 mmol/l 181 (52,5%) 52 (35%) 2,1 [1,4; 3,1] 0,0004

IRI ≥ 1,5 c.u 134 (39%) 40 (27%) 1,75 [1,15;
2,7]

0,009

LAP ≥ 38,5 cm*mmol/l 238 (69%) 67 (45%) 2,7 [1,3;
5,45]

0,003

AIP ≥ 3,4 c.u 190 (55%) 56 (38%) 2,0 [1,3; 3,1] 0,0006

Creatinine, µmol/ml
female ≥94
male ≥87

190 (55%) 47 (31,5%) 2,6 [1,7;
4,05]

<0,0001

GFR < 75 ml/min/1,73 m2 193 (56%) 69 (46%) 1,5 [0,1; 2,2] 0,049

UA ≥ 356 µmol/l 210 (61%) 61 (41%) 2,2 [1,35;
3,6]

0,0008

The analysis results allowed us to identify age ranges for male (≥55 years old) and
female (≥65 years old), which increased the likelihood of OCAD (OR = 1.7, p = 0.01).
In men with WC ≥ 105 cm and women with WC ≥ 115 cm, the probability of detecting
hemodynamically significant CA lesions increased 3 times (p = 0.025). Increase in
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8 K. Shakhgeldyan et al.

WHtR ≥ 0.69 c.u. (OR = 5.7, p = 0.025) and WHR ≥ 0.9 c.u. (OR = 2.9, p = 0.0017)
also increased the likelihood of OCAD regardless subjects gender. Comparable chances
of having OCAD were associated with lipid metabolism disorders, manifested by an
increase in TC concentration ≥5.9 mmol/l (OR = 2.0, p = 0.001), LDLC > 3.5 mmol/l
(OR = 2.1, p = 0.0004) and TG ≥ 1.6 mmol/l (OR = 1.75, p = 0.006), as well as a
decrease in HDLC level ≤1.1 mmol/l (OR = 2.4, p = 0.0002). Similar values of OR
were correlated with indicators IRI ≥ 1.5 c.u. (OR = 1.75, p = 0.009), LAP ≥ 38.5 cm
* mmol/l (OR = 2.7, p = 0.003) and AIP ≥ 3.4 c.u. (OR = 2.0, p = 0.0006). The risk
of OCAD increased with a serum concentration of UA ≥ 356 µmol/L (OR = 2.2, p
= 0.0008) and Creatinine ≥ 87 µmol/mL in men and ≥94 µmol/L in women (OR =
2, 6, p < 0.0001). At the same time, the GFR index <75 ml/min/1.73 m2 increased
the probability of OCAD by 1.5 times (p = 0.049). It should be noted that testing
the predictive potential of individual factors in different numerical ranges allowed us
to identify predictively significant threshold values even among indicators (WHtR and
LAP), the intergroup differences in median values of which at the previous stages of the
study were insignificant.

At the fifth stage of the study, based on the methods of MLR, RF and SVM, prognostic
models were developed to assess the likelihood of OCAD prior to performing invasive
ICA (Table 4). Developing the models, we tested both continuous and categorical forms
of predictors. Those shapes that provided the best accuracy were included in the final
version of the models.

Table 4. Evaluation of the predictive models accuracy for pretest OCAD verification.

№ AUC ACC Sen Spec

MLR

1 TC* + WHR* 0,65 0,56 0,60 0,57

TC + WHR + HDLC 0,72 0,63 0,64 0,62

2 TC* + WHR* + HDLC* 0,75 0,67 0,54 0,82

3 TC* + WHR + HDLC* 0,75 0,66 0,56 0,68

4 TC* + WHR* + HDLC 0,75 0,7 0,67 0,68

5 TC* + WHR* + HDLC + TG* 0,75 0,7 0,7 0,69

6 TC* + WHR* + HDLC + IRI 0,8 0,73 0,74 0,71

7 Ensemble of models (TC* + LDLC* + WHR* + WHtR* +
AIP* + LAP* + UA* + HDLC + IRI)

0,85 0,80 0,82 0,77

SVM

8 TC* + WHR* 0,64 0,63 0,82 0,41

TC + WHR + HDLC 0,68

9 TC* + WHR* + HDLC* 0,73 0,65 0,65 0,65

10 TC* + WHR + HDLC* 0,75 0,71 0,7 0,72

11 TC* + WHR* + HDLC 0,7 0,65 0,65 0,64

(continued)
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Table 4. (continued)

№ AUC ACC Sen Spec

12 TC* + WHR* + HDLC + TG* 0,69 0,63 0,64 0,62

13 TC* + WHR* + HDLC + IRI 0,73 0,67 0,67 0,67

14 Ensemble of models (TC* + LDLC* + WHR* + WHtR* +
AIP* + LAP* + UA* + HDLC + IRI)

0,74 0,65 0,64 0,68

RF

15 TC* + WHR* 0,67 0,6 0,62 0,57

TC + WHR + HDLC 0,69

16 TC* + WHR* + HDLC* 0,71 0,63 0,53 0,77

17 TC* + WHR + HDLC* 0,7 0,66 0,66 0,65

18 TC* + WHR* + HDLC 0,72 0,67 0,65 0,69

19 TC* + WHR* + HDLC + TG* 0,64 0,56 0,56 0,56

20 TC* + WHR* + HDLC + IRI 0,69 0,65 0,67 0,61

21 Ensemble of models (TC* + LDLC* + WHR* + WHtR* +
AIP* + LAP* + UA* + HDLC + IRI)

0,77 0,7 0,7 0,69

During models construction TC ≥ 5.9 mmol/l was determined as the basic predictor
by the direct selection method (Forward Selection procedure). The step-by-step inclusion
of other factors in their structure led to an increase in only certain quality metrics. Their
noticeable rise was recorded in the MLR model (6) with a combination of 4 factors:
TC ≥ 5.9 mmol/l, WHR ≥ 0.9 c.u., as well as HDLC and IRI in continuous form. At
the same time, the predictive algorithm based on the ensemble of MLR models (7),
developed and trained by the Bagging - Bootstrap aggregating method, had the optimal
ratio of Sen (0.82) and Spec (0.77) indicators, as well as the maximum AUC value
(0,85), corresponding to a high forecast accuracy. This model included a combination of
6 predictive algorithms selected from the list of logistic regressions ranked by the Akaike
criterion. The coefficients of the aggregated model were calculated by the weighted
averaging method using the formula:

β̂ig =
∑r

k=1 β̂ik sk�ik
∑r

k=1 sk�ik
(1)

Where β̂ik - coefficient of i-th variable in k-th model; sk - weight of the k-th model
accounting strength of its validity based on the Kullback-Leibler information loss ratio;
�ik - binary indicator values characterizing the presence of i -th predictor in k-th model.

The number of ensemble model components was selected according to predictive
ability calculations depending on regression models number of included inside ensemble
(Fig. 1).
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10 K. Shakhgeldyan et al.

Fig. 1. Accuracy (AUC) dependence by the number of ensemble models

In this ensemble, a combination of 7 factors in categorical form was used as predictors
(TC ≥5.9 mmol/l, LDLC > 3.5 mmol/l, WHR ≥0.9 c.u., WHtR ≥ 0.69 c.u., AIP ≥ 3.4
c.u., LAP ≥ 38.5 cm * mmol/l, UA ≥ 356 µmol/l) and 2 - in continuous (HDLC and IRI).
Various ensemble model predictors on resulting variable influence degree are shown in
the graph (Fig. 2).

Fig. 2. Relative predictors contribution to the resulting variable

Greatest and equivalent impact on resulting variable (OCAD) were showed by 6
predictors: IRI, HDLC, TC, WHtR, AIP, LAP. Less visible contributions were shown
by LDC, WHR i UA. It should be noted that the predictive accuracy of models based
on SVM and RF methods was insufficient for any combination of potential predictors.

4 Discussion

Recently, ML methods have been used increasingly as clinical research predictive tools.
Their application allows output variables modeling based on input factors, which are
characterizing patient clinical and functional status with various diseases, therapy and
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Machine Learning for Assessment of Cardiometabolic Risk Factors 11

surgical treatment options. Modern technologies of collection, storage and processing
info allowed to create big volumes repositories of biomedical data, including through the
use of electronic medical history and patient records including anamnesis of diseases
and their outcomes. This data contains certain knowledge about the causal relation-
ships between patient current state, its dynamic changes during disease process - on
the one hand, and the likelihood of developing different outcomes - on the other. The
indicators for which such relationships were identified are classified as predictors of
the corresponding events. If there are indicators threshold values, which are enchanting
the predictive potential, they can be attributed to risk factors for predicted events. In
contrast to some other areas of knowledge, where the main forecasting goal is the high
developed models accuracy, in clinical medicine, in addition to this criterion, evidence
of the predictors validity is being used and required along with predictors threshold val-
ues specification, degree of influence on the resulting variable assessment and analyzed
factors relationships formalization. The presence of such knowledge increases the “ex-
plainability” of the ML models and, therefore, increases the confidence in the developed
predictive models.

Accuracy is an objective function that determines the models application effective-
ness in various fields of knowledge. At the same time, for medical practice not only the
accuracy of predicting events is important, but also the ability to explain the causes, con-
ditions and mechanisms of their development. This, in turn, is an important condition for
personalizing prevention and therapy programs. Such approach implementation should
be based on the algorithms development for predictors search and validation which are
allowed to show clinical interpretation of their relationships with the endpoints of obser-
vation, provide a higher prognosis quality and create an evidence base for the predictive
models use in clinical practice as support medical decisions tools.

It is generally accepted that as the accuracy of predictive models increases, so does
their opacity. In medical research, the most explainable widely represented models are
logistic models. At the same time, the best forecast quality can be obtained by other ML
methods, for example, random forest, support vector machine and ensemble of models,
which are the most problematic from the explainability point of view.

In recent years, definitions of ML methods explainability, causality, interpretabil-
ity, and “confidence” have been given, and several approaches have been proposed to
“whiten” the black box of ML models and develop “responsible” artificial intelligence
[16]. One of the important explainable artificial intelligence parts is ensuring that in the
developed model only predictors with proven effect on the final variable are being used.
This task is most easily solved by linear or logistic regression models. In these cases,
several approaches are proposed to improve explainability: hypothesis testing for indi-
vidual predictors, overall assessment of model quality and forecast accuracy [17, 18].
These approaches can be used for models developed using other ML methods: rule-based
learning, decision trees, Bayesian classifiers. Despite the fact that these models have the
properties of transparency in construction, decomposition and algorithmization, in most
cases, it is difficult for clinicians to interpret the relationship between the input data and
the endpoint. For example, if continuous predictors in such models directly or inversely
affect the resulting variable, then for physician, in addition to this fact, it is necessary
to set a threshold, above (or below) which the variable would be describing as the risk
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factor of a particular event. The absence of such threshold reduces explainability level of
even simple models. According to other authors, the complexity of models interpretation
is also associated with the consideration lack of the predictors mutual influence on the
resulting variable [19, 20].

The high prevalence of NOCAD among persons with suspected CAD intensifies
the development of prognostic models, which allows to assess the coronary arteries
anatomical status before ICA [3]. It is assumed that these technologies usage would
reducing the unnecessary risks of ICA and lowering irrational health care costs. In our
study, no hemodynamically significant CA lesions were found in 30.4% of patients
during ICA, which prompted the authors to assess the CMR factors predictive potential
for OCAD at the stage of pretest diagnosis. The reason for this analysis was the well-
known key role concept of these factors in pathogenesis [21]. It was previously shown that
combined indices (VAI, LAP), including lipid varieties, differ from isolated indicators
of lipid metabolism in a more reliable relationship with CA damage [22]. The data from
other paper showed that CAD has a closer association with WHtR and VAI indicators
than with LAP [13].

In our work, during a multistage selection procedure, we identified potential pre-
dictors of OCAD, including anthropometric and metabolic indices which characterizing
patients metabolic status.

Obtained results showed that the predictive value of WHR, WHtR and LAP was
higher than VAI, which made it possible to use them in predictive models. Insulin
resistance is one of the leading pathogenetic factors of the arterial pool atherosclerotic
remodeling. The surrogate markers of this syndrome include IRI [3], which demonstrated
significant predictive potential in our study (models 6 and 7). A lot of papers indicate
the relationship between CAD and hyperuricemia, which is also one of the informative
indicators of CMR [23]. In our study, the serum UA level was linearly and nonlinearly
related to OCAD, and its concentration ≥356 µmol/L increased the probability of ver-
ifying hemodynamically significant CA lesions by 2.2 times (Table 3). Which made it
possible to use this indicator as a predictor in the ensemble of MLR models (Table 4).
A lipid spectrum imbalance with an increased concentration of LDL cholesterol and a
decrease in the level of HDL cholesterol has a proven causal relationship with atheroscle-
rotic CA remodeling [24]. In our research the indicators of atherogenic dyslipidemia at
the selection stage demonstrated a high predictive potential and were subsequently used
to construct predictive algorithms (Tables 1, 2 and 3). Wherein, the predictive properties
of HDL cholesterol were manifested in all developed models, while and LDL cholesterol
and AIP - only in the model (7).

A comparative analysis of the algorithms predictive accuracy based on modern ML
methods demonstrated the advantages of a 6 models ensemble developed by MLR. The
quality metrics of this model had maximum values (AUC – 0,85, ACC – 0,80, Sen
– 0,82, Spec – 0,77), which corresponded with high forecast accuracy. In our study, it
was shown that the CAD Consortium model provided a forecast accuracy by AUC 0.75.
In the DISCHARGE 2020 pilot study, the predictive accuracy of the CAD Consortium
scale was AUC 0.73 [25]. The elevation of AUC up to 0.85 was achieved by categorizing
individual indicators, new predictors usage and models ensemble application. The results
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obtained in our study are competitive and comparable to the best predictive indicators
in this area.

5 Conclusion

Based on a comprehensive analysis of data characterizing the functional and metabolic
patients’ status with acute coronary syndrome, the CMR factors were identified and veri-
fied as predictors of OCAD and their threshold values were evaluated (TC ≥ 5.9 mmol/l,
LDLC > 3.5 mmol/l, WHR ≥ 0.9 c.u., WHtR ≥ 0.69 c.u., AIP ≥ 3.4 c.u., LAP ≥ 38.5 cm
* mmol/l, UA ≥ 356 µmol/l).

– The MLR model’s ensemble demonstrated the highest prediction accuracy (AUC –
0,85, ACC – 0,80, Sen – 0,82, Spec – 0,77) based on 6 MLR predictive algorithms
combination.

– In this study, the models based on SVM and RF had significantly lower predictive
accuracy (AUC – 0,74, Acc 0,65, Spec – 0,68, Sen – 0,45 i AUC – 0,77, Acc i Sen
– 0,7, Spec – 0,69, respectively).

Prospects for further research in this area are associated with the improvement of
predictive models based on expanding the range of predictors and methods of ML,
including multilayer artificial neural networks. The limitations of the study associated
with an insufficient sample size, limited range of analyzed factors and methods of ML.
Conflict of Interest: All authors declare no potential conflict of interest.
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