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Abstract—The present study is devoted to the boundary value
problems of the perfect thermoelastic-plastic continua concern-
ing to the hollow cylinder deforming under non-stationary
thermal action. The conventional Prandtl-Reuss elastic-plastic
model generalized on the thermal effects is used. The irre-
versible deformations, residual stresses, and displacements are
computed due to analytical solutions within the framework of
the piecewise linear Tresca and Ishlinsky-Ivlev yield criteria. It
is shown the possibility to estimate the accuracy of numerical
solution obtaining within frameworks of the von Mises yield
criterion. The residual stresses of a hollow elastic-thermoplastic
cylinder processing by unsteady thermal action on the inner
surface are calculated. A new technique for verifying of the
numerical solutions accuracy in problems of the theory of
perfect plasticity is proposed.

Index Terms—elasticity, heat conduction, Ishlinsky-Ivlev
yield criterion, Tresca yield criterion, von Mises yield criterion,
maximum reduced stress, plasticity, residual strain, thermal
stress.

I. PRELIMINARY REMARKS

Ne of the problems of the irreversible deformation

mechanics is the calculation of the stress-strain state
parameters during uneven heating—cooling. On this way it
is possible to estimate the residual stresses values. The high
residual stresses values forming during an elastic-plastic ma-
terial cooling lead to material fracture. The residual stresses
are the essential factor in most technological processes
including natural phenomena and additive manufacturing.
The problems concerning residual stresses computations in
the frameworks of the large elastic-plastic deformations are
discussed in [1], [2], [3]. Some results were presented in
studies concerning residual stress calculations within the
frameworks of the surface growth theory to problems in
geomechanics (e.g., see [4]) and additive manufacturing
technologies (e.g., see [5], [6], [7], [8], [9]). Thus, the
prediction of the residual stresses values under different
heat processing regimes is an actual problem of the modern
continuum mechanics. Studies within thermal stresses theory
frameworks show that the residual stresses is in proportion
to the irreversible deformations. At present, there are many
analytical solutions to one-dimensional problems obtained by
the Tresca yield criterion [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19]. The equilibrium equations integrating
in terms of the displacement vector give us the analytical
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solution in the framework of the perfect plasticity theory.
The Tresca yield criterion accurately describes the elastic-
plastic behaviour of a material under shear deformations.
Another piecewise linear yield criterion is the Ishlinsky-Ivlev
(maximum reduced stress) yield criterion (see in details [14],
[15], [20], [21]). The von Mises yield criterion is more pre-
ferred in the case of thermal expansion. The nonlinearity of
this condition leads to the necessity of numerical integration
of the equilibrium equations even in the one-dimensional
case. Numerical algorithms have a high error value for non-
stationary nonuniform temperature effects calculation in con-
sequence of the simultaneous existence of plastic flow and
unloading domains and elastic-plastic boundaries motion. At
present study we proposed a technique of the residual stress
computing in the frameworks of the piecewise linear Tresca
and Ishlinsky-Ivlev yield criteria. In the stationary thermal
action case similar solutions correspond to the von Mises
yield criterion ones. As shown below, the calculation process
within frameworks of the piecewise linear yield criterion is
simpler and faster in the non-stationary case in contrary to
the numerical integration by virtue of the von Mises yield
criterion.

II. PROBLEM STATEMENT AND GOVERNING EQUATIONS

Let consider the hollow cylinder with inner and outer radii
Ry and Ry respectively.

We assume that the isotropic elastic-plastic material of the
cylinder obeys the conventional Prandtl-Reuss model [14],
[22]. The infinitesimal strains d;; are separated by the elastic
(reversible) e;; and the plastic (irreversible) p;; deformations.
Thus, in cylindrically symmetric case the following equations
are derived

dr'r‘ = Upr = Epr + Drry
Uy
dep = o €pp T Ppps (1)

dzz =Pzt €.

u,. s radial component of the displacement vector. The index
after comma denotes the partial derivative with respect to
corresponding spatial coordinate.

The face surfaces of the cylinder are fixed:

d,., = 0. 2
The lateral surfaces are loads free:
Urr(Rla t) = 0, O—TT(RQ,t) = 0. (3)

The level and distribution of elastic deformations and the
temperature field inside the plate give us the stresses obeying
the Duhamel-Neumann law

Orr = (A +20)err + Mepy + €22) — (3X + 21) A,
Opp = (A +2p)epp + Merr +e.2) — (BA+20)A, (4
022 = (At 21)ez: + Megp + err) — (3X + 2p)A.
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where A(r,t) = a(T(r,t) — Tp) is the thermal expansion of
the cylinder being proportionate to the difference between
actual and referential temperatures; « is the coefficient of
linear thermal expansion; A, p are the Lame modulus.

The thermal stresses inside the cylinder should satisfy to
equilibrium equation

Opprr + w =0, (5)

Temperature field can be obtained by integrating of the
heat conduction equation under given boundary conditions.
We assume that the temperature of the outer cylindrical
surface is given constant Tj, and the temperature of the inner
cylindrical surface depends on time ¢ :

_ tln(r/Rs)
o 1H(R1/R2) '

The thermal stresses are changed in virtue of the gradual
increasing of the temperature gradient. It becomes possible
the irreversible deformations accumulation. Plastic flow pro-
cess is coupled with the yield criterion satisfaction. The fol-
lowing three yield criteria are widely used in solid mechan-
ics: piecewise linear Tresca yield criterion [10] (maximum
tangential stress one)

T(r,t) —Tp (6)

f=max{|oy — 02|, |02 — 03], |03 — 01|} =2k =0; (7)

piecewise linear Ishlinsky—Ivlev yield criterion [14], [15]
(maximum reduced stress one)

4k
f =max{|o; —0|7|O'2—0",|0'3—O'|}—? =0; (¥

von Mises yield criterion [23], [24] (maximum equivalent
tensile stress one)

(0’1—02)2+(02—03)2+(03—01)2287422. (9)

Herein, 0 = (01 +02+403)/3, 01 = 0pp, 02 = O, 03 =
0. We assume that the yield stress is the linear function of
the actual temperature

k(T) = ko(1 - B(T - Tp)), (10)

wherein kg is the referential yield stress, /3 is the constitutive
constant, which can be experimentally obtained.

The yield creteria (7)—(9) can be interpreted as some
surface manifesting plastic properties of the solids in the
Haigh-Westergaard stress space. In particular, the Tresca
and Ishlinsky-Ivlev yield criteria within frameworks of the
HaighWestergaard stress space are presented as the hexago-
nal prisms inclined to the coordinate axes, and the von Mises
one is the cylinder. The projections of the Tresca and the
Ishlinsky-Ivlev yield criteria on deviatoric plane shown on
Fig. 2 are the regular hexagons with a center lying on the
hydrostatic axis, and the similar projection of von Mises yield
criteria is the circle of radius 2\/%14.

The yield criterion is stated the plastic potential due to von
Mises maximum principle. That implicit the associated flow
rule as the general constitutive equation of the flow theory

of

aCTij

9fi

5‘0ij

of:

80'1‘]‘

dp;j = d§ . dpy = d&; +dés (11)

The right equations (11) correspond to the edge of the
piecewise linear yield criteria (7), (8).

201 — 09 -+ 203 = 4k
e

=
02+O'37201:4]€

Fig. 1. Yield criteria in deviatory plane. The red circle is the von Mises
yield criterion. The inscribed green hexagon is the Tresca yield criterion.
The escribed blue hexagon is the Ishlinsky-Ivlev yield criterion. o} are the
projections of the principal stresses at deviatory plane.

III. PLASTIC FLOW

A. Tresca yield condition

The time of the plastic flow arising can be determined by
an yield criterion. For considered boundary value problem
the plastic flow is begun at inner hollow cylinder surfaces.
The plastic flow domain for Tresca yield criterion consist of
the two subdomains:

1) complete plasticity subdomain Ry < r < ag satisfying
the Tresca prism edge equations

Ory —
(12)

Orp —

Drr + Doy + P2z = 0,

2) plastic flow domain as < r < ay corresponding to the
Tresca prism facet equations

Orr = Ozz = ka
Drr + P2z = 0, (13)
Doy = 0.

The plastic deformations are obtained by the equations (1),
@), (5), (12), (13) for domain Ry < r < ai:

1
&= q(Gl(’"v t) = Ga(r,t) + 012(t)>_
2k(r, t) ca(t)
T 3F(r,t) + 2A(r t) — o
p,(zlz) _ 2G _1(r,t) B e (t) n k(r,t) N
q q Y (14)
1 " m
G (1, 1) = 7"(’”“)/1?,1 k(p,t)p™dp,
1 " m
Fo(r,t) = T(m_m/Rl A(p,t)p™dp,
11q
g=(BA+2u), ~= ;
( w, Ot
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for domain a1 < r < as:

p(2) — W(G"I(Tv t) — G_n(’l", t)) ’YA(Tv t) +

" AN+ p) 20

2
gl 7k (r,t)
+@ (Fn(r,t) = (n+ 1) Fy(r, 1)) — T+ (15)
nr=Veg(t)  nea(t) A+
2 ort ) TN N

The unknown functions ¢;(t) presented in the egs. (14),
(15) are found from the boundary conditions (3) and conti-
nuity conditions for the deformations (1) at the elastic-plastic
borders a;. The position of the elastic-plastic borders is com-

puted by the system of equations: pg-) (a1,t) = pglz) (ay,t),

P (az,t) = 0.

B. Ishlinski-Ivlev yield condition

The irreversible deformation corresponding to the
Ishlinsky-Ivlev yield criterion is divided on the three sub-
domains discriminating by following conditions

1) subdomain Ry < r < by

20 — Opp — 04, = 4k,

Prr+2p2. =0, (16)
Ppo = Dzz-
2) subdomain by < r < by
20,y — Opp — 05, = 4k,
Opr + Opp — 20, = 4k, (17)
Drr + P2z + Doy = 0.
3) subdomain by < r < b3
Opp + 0pp — 20, = 4k,
2prr + P22 =0, (18)
Pop = Prr-

The plastic deformations are obtained by the equations (1),
@), (5), (16), (17), (18) for domain R < r < by:

1) _ (1-4x%)
7("7) - W(G—X(rv t) - GX(Tv t))_

2x+D(x+1) 2x—1) -

- oy Fy(r,t)+ 7" !
2y — 1 -1 2y + 1)eo(t

+( X Q)X(X )F,X(T‘, t) _ ( X3T.XJ212( )+

N 2k(r, t)7

w
_ Mg _ 3.
(A +2p)’ q
for domain b; < r < by:
2G1 (7’, t) 2G_1 (T’, t) C3 (t)
J— _|_ —
q 3q 2q

2%k(r t ¢
~3hi(r1) - 20D a4 2,

C1 (t)+

19)

Py =

(20)

cs(t) n 4k(r,t)

— A(r,t);
. 30 (r,t)

zz

4
2= —G_ i (rt) -
3q 71(7‘7 )

for domain by < r < bs:
2x? (g + 3p)

+es(t). @D

The unknown functions c¢;(t) presented in the egs. (19),
(20), (21) are found from the boundary conditions (3) and
continuity conditions of the deformations (1) at the elastic-
plastic borders b;. The position of the elastic-plastic borders
is computed by the system of equations:

2p$2r)(bg, t) +p,(222)(b27 t) =0,
P2 by, t) + 202 (b, 1) =0,

(22)

IV. THERMAL AND RESIDUAL STRESSES COMPUTATIONS

Thermal stresses can be presented under given temperature
as the functions of the plastic deformations p;.., p,,. These
functions are the same for any yield criterion and are
furnished as

- 2—’“/T Prr(pyt) = Poy(pst)
772 Ry P

Ory dp_|_ Cﬁ(t)—

2,“/2 T
“Og o PP )+ Pee(p D) dpt
C7(t)
r2

(23)

+ —2F\(r,t), 0pp = (rom(r,t),),

Ozz = w(prr (T’ t) T Doy (7‘7 t))+

+/\cr7«,. (r,t) + Aopp(r,t) — 2uA(r,t)

2(A + )
The thermal stresses fields for each piecewise linear yield
criterion under given thermal action are shown on Fig. 2. We

oij/ko

0.2 b0l by ba2 0.5

Fig. 2. The thermal stresses corresponding to the Tresca (TYC) and the
Ishlinsky—Ivlev (ITYC) piecewise yield criteria. R1/R2 = 0.2

can simply obtain the equations of the residual stresses by
vanishing of the terms with the thermal expansion function
A(r,t) in the eqs. (23). The residual stresses are shown
in the Fig. 3 for the Tresca and the Ishlinsky—Ivlev yield
criteria under referential temperature. Arithmetic mean of
the solutions for the Tresca and the Ishlinsky—Ivlev yield
criteria can predict the strain-stress state calculating in the
frameworks of the von Mises yield criterion. The thermal
stress states in these cases are shown on the Fig. 4.

V. CONCLUSION

The obtained results can be generalized to the case of
non-stationary temperature action. Numerical algorithms for
calculating stresses within the framework of the von Mises
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Fig. 3. The residual stresses fields corresponding to the residual defor-
mations for the Tresca (TYC) and the Ishlinsky—Ivlev (IIYC) yield criteria.
Ri/R2=0.2

0ij/ko
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Fig. 4. Thermal stresses. Arithmetic mean (AMYC) of the solutions for the
Tresca and the Ishlinsky—Ivlev yield criteria. The numerical solution (MYC)
for the von Mises yield criterion. Ry /R = 0.2

oij/ko

2t =

MYO) S ‘ ulvinted |
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Fig. 5. Residual stresses. Arithmetic mean (AMYC) of the solutions for the
Tresca and the Ishlinsky-Ivlev yield criteria. The numerical solution (IIYC)
for the von Mises yield criterion. R1/R2 = 0.2

yield criterion taking into account the local time derivative
of temperature require a large calculating time. The replace-
ment of such numerical solutions by approximations being
arithmetic mean (AMYC lines on the Figs 4, 5) of the
solutions for the Tresca and the Ishlinsky—Ivlev yield criteria
can simplify the problem of calculating of stress-strain state
parameters. The alternative solutions make it possible to

estimate the size of the plastic flow domain and the residual
stresses values. In addition, such solutions can be used to
evaluate the correctness of the numerical solutions obtaining
under the von Mises yield criterion.
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