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where ∆(r, t) = α(T (r, t)−T0) is the thermal expansion of
the cylinder being proportionate to the difference between
actual and referential temperatures; α is the coefficient of
linear thermal expansion; λ, µ are the Lame modulus.

The thermal stresses inside the cylinder should satisfy to
equilibrium equation

σrr,r +
σrr − σϕϕ

r
= 0, (5)

Temperature field can be obtained by integrating of the
heat conduction equation under given boundary conditions.
We assume that the temperature of the outer cylindrical
surface is given constant T0, and the temperature of the inner
cylindrical surface depends on time t :

T (r, t)− T0 =
t ln(r/R2)

ln(R1/R2)
. (6)

The thermal stresses are changed in virtue of the gradual
increasing of the temperature gradient. It becomes possible
the irreversible deformations accumulation. Plastic flow pro-
cess is coupled with the yield criterion satisfaction. The fol-
lowing three yield criteria are widely used in solid mechan-
ics: piecewise linear Tresca yield criterion [10] (maximum
tangential stress one)

f = max {|σ1 − σ2| , |σ2 − σ3| , |σ3 − σ1|} − 2k = 0; (7)

piecewise linear Ishlinsky–Ivlev yield criterion [14], [15]
(maximum reduced stress one)

f = max {|σ1 − σ| , |σ2 − σ| , |σ3 − σ|} −
4k

3
= 0; (8)

von Mises yield criterion [23], [24] (maximum equivalent
tensile stress one)

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 = 8k2. (9)

Herein, σ = (σ1 +σ2 +σ3)/3, σ1 = σrr, σ2 = σϕϕ, σ3 =
σzz . We assume that the yield stress is the linear function of
the actual temperature

k(T ) = k0(1− β(T − T0)), (10)

wherein k0 is the referential yield stress, β is the constitutive
constant, which can be experimentally obtained.

The yield creteria (7)–(9) can be interpreted as some
surface manifesting plastic properties of the solids in the
Haigh-Westergaard stress space. In particular, the Tresca
and Ishlinsky-Ivlev yield criteria within frameworks of the
HaighWestergaard stress space are presented as the hexago-
nal prisms inclined to the coordinate axes, and the von Mises
one is the cylinder. The projections of the Tresca and the
Ishlinsky-Ivlev yield criteria on deviatoric plane shown on
Fig. 2 are the regular hexagons with a center lying on the
hydrostatic axis, and the similar projection of von Mises yield
criteria is the circle of radius 2

√
2/3k.

The yield criterion is stated the plastic potential due to von
Mises maximum principle. That implicit the associated flow
rule as the general constitutive equation of the flow theory

dpij = dξ
∂f

∂σij
, dpij = dξ1

∂f1
∂σij

+ dξ2
∂f2
∂σij

. (11)

The right equations (11) correspond to the edge of the
piecewise linear yield criteria (7), (8).
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Fig. 1. Yield criteria in deviatory plane. The red circle is the von Mises
yield criterion. The inscribed green hexagon is the Tresca yield criterion.
The escribed blue hexagon is the Ishlinsky-Ivlev yield criterion. σ′

i are the
projections of the principal stresses at deviatory plane.

III. PLASTIC FLOW

A. Tresca yield condition

The time of the plastic flow arising can be determined by
an yield criterion. For considered boundary value problem
the plastic flow is begun at inner hollow cylinder surfaces.
The plastic flow domain for Tresca yield criterion consist of
the two subdomains:

1) complete plasticity subdomain R1 < r < a2 satisfying
the Tresca prism edge equations

σrr − σϕϕ = 2k,
σrr − σzz = 2k,

prr + pϕϕ + pzz = 0,
(12)

2) plastic flow domain a2 < r < a1 corresponding to the
Tresca prism facet equations

σrr − σzz = 2k,
prr + pzz = 0,
pϕϕ = 0.

(13)

The plastic deformations are obtained by the equations (1),
(4), (5), (12), (13) for domain R1 < r < a1:

p(1)rr =
1

q

(
G1(r, t)−G−1(r, t) +

c1(t)

2

)
−

−2k(r, t)

γ
− 3F1(r, t) + 2∆(r, t)− c2(t)

r2
,

p(1)zz =
2G−1(r, t)

q
− c1(t)

q
+
k(r, t)

γ
−∆(r, t),

Gm(r, t) =
1

r(m+1)

∫ r

R1

k(ρ, t)ρmdρ,

Fm(r, t) =
1

r(m+1)

∫ r

R1

∆(ρ, t)ρmdρ,

q = (3λ+ 2µ), γ =
µq

(λ+ µ)
,

(14)
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for domain a1 < r < a2:

p(2)rr =
η(Gη(r, t)−G−η(r, t))

4(λ+ µ)
+
γ∆(r, t)

2µ
+

+
γ

4µ
(F−η(r, t)− (η + 1)Fη(r, t))− η2k(r, t)

2µ
+

+
ηr(η−1)c3(t)

2
− ηc4(t)

2r(η+1)
, η =

√
λ+ 2µ

λ+ µ
.

(15)

The unknown functions ci(t) presented in the eqs. (14),
(15) are found from the boundary conditions (3) and conti-
nuity conditions for the deformations (1) at the elastic-plastic
borders ai. The position of the elastic-plastic borders is com-
puted by the system of equations: p(1)rr (a1, t) = p

(1)
zz (a1, t),

p
(2)
rr (a2, t) = 0.

B. Ishlinski-Ivlev yield condition

The irreversible deformation corresponding to the
Ishlinsky-Ivlev yield criterion is divided on the three sub-
domains discriminating by following conditions

1) subdomain R1 < r < b1

2σrr − σϕϕ − σzz = 4k,
prr + 2pzz = 0,
pϕϕ = pzz.

(16)

2) subdomain b1 < r < b2

2σrr − σϕϕ − σzz = 4k,
σrr + σϕϕ − 2σzz = 4k,
prr + pzz + pϕϕ = 0.

(17)

3) subdomain b2 < r < b3

σrr + σϕϕ − 2σzz = 4k,
2prr + pzz = 0,
pϕϕ = prr.

(18)

The plastic deformations are obtained by the equations (1),
(4), (5), (16), (17), (18) for domain R1 < r < b1:

p(1)rr =
(1− 4χ2)

3χq
(G−χ(r, t)−Gχ(r, t))−

− (2χ+ 1)(χ+ 1)

2χ
Fχ(r, t) +

(2χ− 1)

3
rχ−1c1(t)+

+
(2χ− 1)(χ− 1)

2χ
F−χ(r, t)− (2χ+ 1)c2(t)

3rχ+1
+

+2∆(r, t)− 2k(r, t)

ω
,

ω =
µq

(λ+ 2µ)
, χ =

√
1 +

3µ

q
;

(19)

for domain b1 < r < b2:

p(2)rr =
2G1(r, t)

q
− 2G−1(r, t)

3q
+
c3(t)

2q
−

−3F1(r, t)− 2k(r, t)

ω
+ 2∆(r, t) +

c4(t)

r2
,

p(2)zz =
4

3q
G−1(r, t)− c3(t)

q
+

4k(r, t)

3q
−∆(r, t);

(20)

for domain b2 < r < b3:

p(3)rr =
∆(r, t)

2χ2
− (λ+ 2µ)k(r, t)

µ(q + 3µ)
+ c5(t). (21)

The unknown functions ci(t) presented in the eqs. (19),
(20), (21) are found from the boundary conditions (3) and
continuity conditions of the deformations (1) at the elastic-
plastic borders bi. The position of the elastic-plastic borders
is computed by the system of equations:

2p
(2)
rr (b2, t) + p

(2)
zz (b2, t) = 0,

p
(2)
rr (b1, t) + 2p

(2)
zz (b1, t) = 0,

p
(3)
rr (b3, t) = 0.

(22)

IV. THERMAL AND RESIDUAL STRESSES COMPUTATIONS

Thermal stresses can be presented under given temperature
as the functions of the plastic deformations prr, pϕϕ. These
functions are the same for any yield criterion and are
furnished as

σrr =
2µ

η2

∫ r

R1

prr(ρ, t)− pϕϕ(ρ, t)

ρ
dρ+ c6(t)−

− 2µ2

(λ+ 2µ)r2

∫ r

R1

ρ(prr(ρ, t) + pϕϕ(ρ, t))dρ+

+
c7(t)

r2
− 2ωF1(r, t), σϕϕ = (rσrr(r, t),r),

σzz = ω(prr(r, t) + pϕϕ(r, t))+

+
λσrr(r, t) + λσϕϕ(r, t)− 2µ∆(r, t)

2(λ+ µ)
.

(23)

The thermal stresses fields for each piecewise linear yield
criterion under given thermal action are shown on Fig. 2. We

0.2 0.5

−2

−1

0

b1 b2 b3a1 a2

(TYC)

(IIYC)

r/R2

σij/k0

σrr
σϕϕ
σzz

Fig. 2. The thermal stresses corresponding to the Tresca (TYC) and the
Ishlinsky–Ivlev (IIYC) piecewise yield criteria. R1/R2 = 0.2

can simply obtain the equations of the residual stresses by
vanishing of the terms with the thermal expansion function
∆(r, t) in the eqs. (23). The residual stresses are shown
in the Fig. 3 for the Tresca and the Ishlinsky–Ivlev yield
criteria under referential temperature. Arithmetic mean of
the solutions for the Tresca and the Ishlinsky–Ivlev yield
criteria can predict the strain-stress state calculating in the
frameworks of the von Mises yield criterion. The thermal
stress states in these cases are shown on the Fig. 4.

V. CONCLUSION

The obtained results can be generalized to the case of
non-stationary temperature action. Numerical algorithms for
calculating stresses within the framework of the von Mises
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Fig. 3. The residual stresses fields corresponding to the residual defor-
mations for the Tresca (TYC) and the Ishlinsky–Ivlev (IIYC) yield criteria.
R1/R2 = 0.2
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Fig. 4. Thermal stresses. Arithmetic mean (AMYC) of the solutions for the
Tresca and the Ishlinsky–Ivlev yield criteria. The numerical solution (MYC)
for the von Mises yield criterion. R1/R2 = 0.2
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Fig. 5. Residual stresses. Arithmetic mean (AMYC) of the solutions for the
Tresca and the Ishlinsky–Ivlev yield criteria. The numerical solution (IIYC)
for the von Mises yield criterion. R1/R2 = 0.2

yield criterion taking into account the local time derivative
of temperature require a large calculating time. The replace-
ment of such numerical solutions by approximations being
arithmetic mean (AMYC lines on the Figs 4, 5) of the
solutions for the Tresca and the Ishlinsky–Ivlev yield criteria
can simplify the problem of calculating of stress-strain state
parameters. The alternative solutions make it possible to

estimate the size of the plastic flow domain and the residual
stresses values. In addition, such solutions can be used to
evaluate the correctness of the numerical solutions obtaining
under the von Mises yield criterion.

REFERENCES

[1] A. A. Burenin, L. V. Kovtanyuk and E. V. Murashkin, “On the residual
stresses in the vicinity of a cylindrical discontinuity in a viscoelasto-
plastic material,” Journal of Applied Mechanics and Technical Physics,
vol. 47. pp. 241-248, 2006.

[2] A. A. Bazhin and E. V. Murashkin, “Creep and Stress Relaxation in the
Vicinity of a Micropore under the Conditions of Hydrostatic Loading
and Unloading,” Doklady Physics, Pleiades Publishing, Ltd., vol. 57(8),
pp. 294-296, 2012.

[3] A.A. Burenin, L.V. Kovtanyuk and E.V. Murashkin, “Strengthening of
Materials by Intensive Hydrostatic Compression Pretreatment,” Mech.
Solids. vol. 47(6), pp. 665-670, 2012.

[4] A.V. Manzhirov and D.A. Parshin, “Accretion of Spherical Viscoelastic
Objects under Self-Gravity,” Lecture Notes in Engineering and Com-
puter Science. vol. 2224(1), pp. 11311135, 2016.

[5] S.A. Lychev, A.V. Manzhirov, and S.V. Joubert, “Closed solutions of
boundary-value problems of coupled thermoelasticity,” Mechanics of
solids. vol. 45(4) pp. 610-623, 2010.

[6] S.A. Lychev, T.N. Lycheva, and A.V. Manzhirov, “Unsteady vibration of
a growing circular plate,” Mechanics of solids. vol. 46(2) pp. 325-333,
2011.

[7] A.V. Manzhirov and S.A. Lychev, “The mathematical theory of growing
solids: Finite deformations,” Doklady Physics. vol. 57(4), pp. 160-163,
2012.

[8] A.V. Manzhirov, “Mechanics of growing solids and phase transitions,”
Key Engineering Materials. vol. 535, pp. 89-93, 2013.

[9] A.V. Manzhirov and D.A. Parshin, “Influence of the erection regime on
the stress state of a viscoelastic arched structure erected by an additive
technology under the force of gravity,” Mechanics of Solids. vol. 50(6),
pp. 657-675, 2015.
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