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Abstract—Generalizing the model of large deformations by accounting for the viscous properties
of materials, we obtain the analytical solutions of some quasistatic boundary value problems
concerning the viscosimetric flows of an elastoviscoplastic material in the gap between the rigid
coaxial cylindrical surfaces when, in the neighborhood of one of the rigid cylinders (either internal or
external), there is a layer of an elastic non-Newtonian lubricant, and the rigid adhesion conditions
are satisfied on boundary surfaces. The conditions are studied of origination of a flow in the lubricant
layer and in the basic material. The values of the maximum velocity are specified under which the
flow does not tresspass the lubricant layer.
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INTRODUCTION

In lubrication theory, the elasticity of a lubricating liquid is usually neglected since its shear modulus
is assumed to be negligibly small in comparison with that of the rubbing parts. Therefore, lubrication
is modeled by a viscous or viscoplastic liquid whereas the rubbing parts are assumed, most often, to be
rigid. Let us note additionally that the sophistication in the model connected with the presence of the
fluidity limit turned out important not only because the majority of lubricating materials manifest such
properties but also because the very character of rapid movements in the thin layers presupposes the
formation of stagnant zones near the asperities of the boundary surfaces. It leads to the fact that the
viscous resistance to movement for viscoplastic lubrication turns out smaller than in a similar viscous
case. The wear-and-tear and the fatigue strength of the materials joined by the lubricant layer are
connected in that case only with the direct contact of the rubbing parts due to extrusion of the lubricant
layer; i.e., essentially, due to the defects in lubrication.

If the elastic properties of a lubricant material were taken into account then there would be present
some different effect in decreasing the long-term durability connected with the transfer of deformations
through the lubricant layer. Then the developing deformations give rise to a field of stresses in the
contacting bodies, which under certain conditions results in their irreversible deformations and for-
mation of residual stresses. These processes significantly influence the fatigue strength of the moving
constructional elements, and it is exactly the influence of these processes that is supposed to diminish
the lubricant layer.

Accounting for the elastic properties in the lubricant layer and the elastoplastic properties of the
materials contacting through lubrication of the bodies encounters considerable mathematical difficulties.
The deformations in the layer cannot be considered small; hence, it is necessary to engage the theory
of large deformations of the bodies with elastic, plastic, and viscous properties [1–11]. Under certain
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432 BURENIN et al.

conditions, the same turns out necessary while modeling the deformation process of the contacting
bodies.

Let us use the model that we proposed earlier [10], where the two hypotheses were introduced:
during unloading the components of the tensor of irreversible deformations change in the same way as
during rigid movement; the reversible deformations completely determine the stress field in a medium.
It turns out [10, 11] that these conditions, natural for classical elastoplasticity [12], suffice to construct
a mathematical model in whose framework it is possible to formulate and solve the boundary value
problems of the theory [11, 13–15] including the viscosimetric flow problems [16].

1. THE BASIC MODEL RELATIONS

In the rectangular Cartesian system of the Euler spatial coordinates, the kinematics of a medium is
determined by the equations [11]

dij = eij + pij −
1
2

eikekj − eikpkj − pikekj + eikpksesj ,

Deij

Dt
= εij − εp

ij −
1
2
((

εik − εp
ik + zik

)
ekj + eik

(
εkj − εp

kj − zkj

))
,

Dpij

Dt
= εp

ij − pikε
p
kj − εp

ikpkj,
Dnij

Dt
=

dnij

dt
− riknkj + nikrkj,

εij =
1
2
(υi,j + υj,i), υi =

dui

dt
=

∂ui

∂t
+ ui,jυj , ui,j =

∂ui

∂xj
,

rij =
1
2
(υi,j − υj,i) + zij(εsk, esk).

(1.1)

In (1.1), dij are the components of the Almansi deformation tensor; eij and pij are their reversible and
irreversible components; ui and υi are the components of the displacement vectors and the velocities of
the medium points; D

Dt is the objective derivative of the tensors with respect to time shown for an arbitrary
tensor nij ; and εp

ij (the source in the transfer equation for the tensor of irreversible deformations) are the
components of the tensor of the plastic deformation rates. The presence of a nonlinear component zij

of the rotation tensor rij , which is completely written in [10], is connected with the requirement of
constancy of the plastic deformations tensor pij in unloading processes.

The stresses in the medium are entirely determined by the reversible deformations and, for an isotropic
incompressible material, are related to them via the equations

σij = −pδij +
∂W

∂dik
(δkj − 2dkj) for pij ≡ 0,

σij = −p1δij +
∂W

∂eik
(δkj − ekj) for pij �= 0,

W = −2μJ1 − μJ2 + bJ2
1 + (b − μ)J1J2 − χJ3

1 + . . . ,

Jk =

{
Lk, pij ≡ 0
Ik, pij �= 0,

L1 = dkk, L2 = dikdki,

I1 = ekk − 1
2
eskeks, I2 = estets − eskektets +

1
4
eskektetnens.

(1.2)

In (1.2), σij are the components of the Euler–Cauchy stress tensor, p and p1 are the additional
hydrostatic pressures, W is the elastic potential, μ is the shear modulus, and b and χ are some constant
parameters of the material. The Tresk load function [17] is used as the plastic potential:

max |σi − σj | = 2k + 2η max
∣
∣εp

k

∣
∣, (1.3)

where k is the fluidity limit, η is the viscosity coefficient, while σi and εp
k are the principal values of the

tensors of stresses and the rates of plastic deformations.
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The connection between the rates of the irreversible deformations and the stresses is established by
the associated law of plastic flow:

εp
ij = λ

∂f

∂σij
, f

(
σij , ε

p
ij

)
= k, λ > 0. (1.4)

2. REVERSIBLE DEFORMATION AND VISCOPLASTIC FLOW
Let us consider the case when the lubricant layer is situated next to the internal rigid cylinder which

is rotating around its axis. The mechanical properties of the basic material r1 ≤ r ≤ R are given by the
parameters μ1, b1, χ1, k1, and η1; the analogous mechanical parameters of the layer r0 ≤ r ≤ r1 are
denoted by μ2, b2, χ2, k2, and η2, while k2 < k1. We assume that the adhesion conditions hold on the
boundary surfaces; and the boundary conditions on the external rigid cylinder are of the form

ū = ῡ = 0 for r = R. (2.1)

When the points of the medium move along the circles, the components of the displacement vector
are given by the dependencies ur = r(1 − cos θ(r, t)) and uϕ = r sin θ(r, t), where θ(r, t) is the central
angle of twisting. The nonzero components of the Almansi deformation tensor are as follows:

drr = −1
2

g2, drϕ =
1
2

g, g = r
∂θ

∂r
.

The equations (1.2) for the deformation components yield the following relations accurate to within
the terms of the second order of smallness with respect to deformations:

σrr = σzz = −(p + 2μ) − 1
2

(b + μ)g2 = −s, σϕϕ = −s + μg2, σrϕ = μg.

With the selected arrangement of the layer, the plastic flow always originates near the internal rigid
surface r = r0. This happens when the stressed state comes out to the loading surface σrϕ|r=r0 = −k2.

Integrating the equations of equilibrium (the quasistatic approximation)
∂σrr

∂r
+

σrr − σϕϕ

r
= 0,

∂σrϕ

∂r
+ 2

σrϕ

r
= 0 (2.2)

and using the condition of coincidence of displacements for r = r1 and r = R, we obtain

θ = A(c), A(c) =
c

2μ1

(
1/R2 − 1/r2

)

in the domain r1 ≤ r ≤ R and

θ = A1(c), A1(c) =
c

2μ1

(
1/R2 − 1/r2

1

)
+

c

2μ2

(
1/r2

1 − 1/r2
)

in the layer r0 ≤ r ≤ r1; here c is an unknown constant of integration.
Using the plasticity condition, we find that c = −k2r

2
0 at the start of the plastic flow. The rotation

angle on which the rigid cylinder should be rotated to initiate the plastic flow can be obtained by the
formula

θ0 =
k2

2μ2

(
1 − r2

0/r
2
1

)
+

k2

2μ1

(
r2
0/r

2
1 − r2

0/R
2
)
. (2.3)

Starting from the time t = t0 = 0, some domain of viscoplastic flow develops bounded by the surfaces
r = r0 and r = x1(t) (r0 ≤ r ≤ x1(t)).

According to (1.1), the following kinematic relations hold for the components of the velocity vector
and the tensor of the deformation rates:

υϕ = r
∂θ

∂t
= rω, εrϕ =

1
2

(
∂υϕ

∂r
− υϕ

r

)
=

∂drϕ

∂t
=

1
2

r
∂2θ

∂r∂t
,

εrϕ = εe
rϕ + εp

rϕ =
∂erϕ

∂t
+

∂prϕ

∂t
, εp

rr =
∂prr

∂t
+ 2prϕ

(
rϕr + εp

rϕ

)
,

εp
ϕϕ =

∂pϕϕ

∂t
+ 2prϕ

(
rrϕ + εp

rϕ

)
, εp

rr = −εp
ϕϕ = −2εp

rϕerϕ.

(2.4)
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Fig. 1. The development of the region of viscoplastic flow

Let us calculate the parameters of the stressed-deformed state at some time t = t1 ≥ t0. Neglecting
the inertia forces in the domains of elastic deformation, we obtain

σrϕ = c1/r
2, ω = 0, c1 = c(t1), θ =

{
A(c1), r1 ≤ r ≤ R,

A1(c1), x1(t) ≤ r ≤ r1.
(2.5)

From the second equation of (1.2) we have for the stress components in the plastic flow domain

σrr = σzz = −(p1 + 2μ) − 1
2
(b + μ)e2

rϕ = −s1(t),

σϕϕ = −s1(t) + 4μe2
rϕ, σrϕ = 2μerϕ.

At the same time, integrating the equilibrium equations, we have

σrϕ = m(t1)/r2, erϕ = m(t1)/(2μr2).

It follows from the conditions of continuity of the stress components that m(t1) = c1 and s(t1) = s1(t1).
According to (1.3) and (1.4), we have

σrϕ = −k + ηεp
rϕ, λ = −εp

rϕ/
(
k − ηεp

rϕ

)
.

Using (2.4) and the continuity condition for the velocities and displacements, we find in the region of
viscoplastic flow that

εp
rϕ =

1
η2

(k2 + c1/r
2), prϕ =

t

η2
(k2 + c1/r

2), c1 = −k2x
2
1, ω = F (c1, r, x1),

θ = tF (c1, r, x1) + A4(c1), F (c1, r, x1) =
2
η2

(
k2 ln

r

x1
+

c1

2
(
1/x2

1 − 1/r2
)
)

.

Specifying the rotation velocity of the internal cylinder, we obtain an equation for determining the
elastoplastic boundary x1(t):

ω(r0, t1) = F (c1, r0, x1). (2.6)

Under the increase of the rotation velocity of the rigid cylinder, the region of viscoplastic flow enlarges;
and, at a certain moment, the boundary x1 reaches the external surface of the layer r = r1. In Fig. 1,
the development of this region is shown in its dependence on the rotation velocity of the internal rigid
cylinder.

The calculations were conducted under the following values of the parameters:

r0/R = 0.4, r1/R = 0.6, αη1/μ1 = 0.01638,
αη2/μ2 = 0.2195, k1/μ1 = 0.00165, k2/μ2 = 0.0007.

(2.7)

If we increase the rotation velocity even further then, at some time t = t′1, when the plasticity
condition σrϕ|r=r1 = −k1 is satisfied, the viscoplastic flow will begin in the basic material as well.
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In order for the flow to be possible only in the layer with the lubricant and the basic material to deform
only elastically, it is necessary to rotate the cylinder with the velocity not exceeding the value

ω(r0, t1) < ω̃ = F
(
− k1r

2
1, r0, r1

)
. (2.8)

If (2.8) is not satisfied then, starting from the time t = t′1, in the basic material the region of
viscoplastic flow r1 ≤ r ≤ x2(t) will develop. In this case, integrating the equilibrium equations and
using the conditions of continuity of the displacements and velocities on the surfaces r = x2(t) and
r = r1, we infer that

θ = A(c2), ω = 0

in the domain x2(t) ≤ r ≤ R;

εp
rϕ =

1
η1

(k1 + c2/r
2), prϕ =

t − t′1
η1

(k1 + c2/r
2), c2 = −k1x

2
2,

θ =
(
t − t′1

)
F1(c2, r, x2) + A(c2), ω = F (c2, r, x2),

F1(c1, r, x2) =
2
η1

(
k1 ln

r

x2
+

c1

2
(
1/x2

2 − 1/r2
)
)

in the domain r1 ≤ r ≤ x2(t); and

εp
rϕ =

1
η2

(k2 + c2/r
2), prϕ =

t

η2
(k2 + c2/r

2),

θ =
(
t − t′1

)
F1(c2, r1, x2) + t′2F (c2, r, r1) + A1(c2), ω = F1(c2, r1, x2) + F (c2, r, r1)

in the domain r0 ≤ r ≤ r1.
The location of the elastoplastic boundary x2(t) is determined by the equation

ω(r0, t2) = F1(c2, r1, x2) + F (c2, r0, r1).

Let us consider how the stressed-deformed state changes if the rigid cylinder (starting from time
t = t′2) will rotate in the opposite direction. At first, the stresses will diminish in absolute values. At the
moment of complete unloading when the stress meets σrϕ = 0 throughout the entire deformation region
r0 ≤ r ≤ R, the following will hold:

θ = 0, ω = 0

in the domain x2

(
t′2

)
≤ r ≤ R;

εp
rϕ = 0, prϕ =

t′2 − t′1
η1

(k1 + c3/r
2), c3 = −k1x

2
2

(
t′2

)
,

θ =
(
t′2 − t′1

)
F1(c3, r, x2), ω = 0

in the domain r1 ≤ r ≤ x2

(
t′2

)
; and

εp
rϕ = 0, prϕ =

t′2
η2

(k2 + c3/r
2),

θ =
(
t′2 − t′1

)
F1(c3, r1, x2) + t′2F (c3, r, r1), ω = 0

in the domain r0 ≤ r ≤ r1.
Then the stresses increase, and, at time t = t′3, the plasticity condition σrϕ|r=r0 = −k2 holds on the

surface r = r0. At this moment, the value of the rotation angle of the internal rigid cylinder is

θ2 = θ
(
r0, t

′
3

)
=

(
t′2 − t′1

)
F1(c3, r1, x2) + t′2F (c3, r, r1) + A(c4), c4 = k2r

2
0.

From time t = t′3, some region develops of the secondary viscoplastic flow, r0 ≤ r ≤ x3. Integrating the
equations of equilibrium, we find for θ(r, t) and ω(r, t) that

θ = A(c5), c5 = k2x
2
3, ω = 0
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in the domain x2

(
t′2

)
≤ r ≤ R;

θ =
(
t′2 − t′1

)
F1(c3, r, x2) + A(c5), ω = 0

in the domain r1 ≤ r ≤ x2

(
t′2

)
;

θ = (t′2 − t′1)F1(c3, r1, x2) + t′2F (c3, r, r1) + A1(c5), ω = 0

in the domain x3(t) ≤ r ≤ r1; and

θ =
(
t′2 − t′1

)
F1(c3, r1, x2) + t′2F (c3, r, r1) + tF (−c5, x3, r) + A1(c5), ω = F (−c5, x3, r)

in the domain r0 ≤ r ≤ x3(t).
To determine the boundary x3(t) of the viscoplastic flow region, it is necessary to specify the

angular velocity on the internal rigid cylinder at each time t3. Then we obtain ω(r0, t3) = F (−c5, x3, r0).
As it follows from the solution of this equation, the boundary x3(t) will eventually reach the external
surface of the layer r = r1. With the increase of the rotation velocity of the internal cylinder, the
irreversible deformations will accumulate in the region r0 ≤ r ≤ x3 = r1; however, the region itself
will not become larger. When the stressed state comes out to the fluidity surface (1.3) (time t′4) then
the plastic flow starts in the basic material r1 ≤ r ≤ x4 as well. In the regions x2(t′2) ≤ r ≤ R and
x4 ≤ r ≤ x2(t′2), there hold the same dependencies as before, where instead of c5 we must insert
c6 = k1x

2
4. In the viscoplastic flow regions we find that

prϕ =
t − t′4

η2
(c6/r

2 − k2) +
t′2 − t′1

η1
(k1 + c3/r

2),

θ =
(
t′2 − t′1

)
F1(c3, r, x2) −

(
t − t′4

)
F1(−c6, r, x4) + A(c6)

in the domain r1 ≤ r ≤ x4;

θ =
(
t′2 − t′1

)
F1(c3, r1, x2) −

(
t − t′4

)
F1(−c6, r1, x4) − tF (−c6, r, r1) + t′2F (c3, r, r1) + A1(c6)

in the domain r0 ≤ r ≤ r1. In this case, for the elastoplastic boundary x4(t), the following holds:

ω(r0, t4) = F1(−c6, x4, r1) + F (−c6, r1, r0).

If we further increase the rotation angle of the internal cylinder then, at time t = t′5, the boundary x4(t)
will reach the surface r = x2, and the plastic domain will develop further. We will obtain in this case:

θ = A(c6)

in the domain x4(t) ≤ r ≤ R;

θ =
(
t′5 − t

)
F1(−c6, r, x4) + A(c6)

in the domain x2(t′2) ≤ r ≤ x4(t);

θ =
(
t′5 − t

)
F1(−c6, x2, x4) +

(
t′2 − t′1

)
F1(c3, r1, x2) −

(
t − t′4

)
F1(−c6, r, x2) + A(c6)

in the domain r1 ≤ r ≤ x2(t′2); and

θ =
(
t′5 − t

)
F1(−c6, x2, x4) +

(
t′2 − t′1

)
F1(c3, r1, x2)

−
(
t − t′4

)
F1(−c6, r1, x2) + t′2F (c3, r, r1) − tF (−c6, r, x3) + A1(c6)

in the domain r0 ≤ r ≤ r1.
In Fig. 2, the distribution is shown of the rotation angle at time t0 of the beginning of the plastic flow

near the surface r = r0, at t0 < t1 < t∗1, at time t∗1 when the boundary x1(t) reaches the surface r = r1,
at t′2, at time t′3 < t∗3 < t′4, and at time t4 > t′4.

In an analogous fashion, we obtain the solution of the problem in the case when the external cylinder is
rotating, whereas the internal is rigidly fixed. Then, under reversible deformation we find for the function θ
that

θ = A2(c), A2(c) =
c

2μ1
(1/r2

1 − 1/r2) +
c

2μ2
(1/r2

0 − 1/r2
1)
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Fig. 2. Distribution of the rotation angle in dependence on the radius under rotation of the
internal rigid cylinder

in the domain r1 ≤ r ≤ R and

θ = A3(c), A3(c) =
c

2μ2
(1/r2

0 − 1/r2)

in the layer r0 ≤ r ≤ r1.

The initial parameter θ0 = θ(R, t0) for the plastic flow is determined by (2.3). Under conditions of the
developing viscoplastic flow, we have

θ = tF (−c1, r0, x1) + A2(c1), ω = F (−c1, r0, x1)

in the elastic region r1 ≤ r ≤ R;

θ = tF (−c1, r0, x1) + A3(c1), ω = F (−c1, r0, x1)

in the elastic region x1 ≤ r ≤ r1; and

εp
rϕ =

1
η2

(c1/r
2 − k2), prϕ =

t

η2
(c1/r

2 − k2),

c1 = k2x
2
1, θ = tF (−c1, r0, r) + A3(c1), ω = F (−c1, r0, r)

in the region of the viscoplastic flow r0 ≤ r ≤ x1. The moving boundary x1(t) can be found by solving
the equation

ω(R, t1) = F (−c1, r0, x1). (2.9)

It follows from the comparison of (2.6) and (2.9) that, despite the difference in displacements and
velocities, the viscoplastic flow domain is developing under the rotation of the external cylinder in the
same way as in the case of rotation of the internal one.

At time t∗1 the boundary x1(t) reaches the surface r = r1. Under further increase of the rotation
velocity of the internal cylinder, the irreversible deformations are accumulated in the domain r0 ≤ r ≤ r1.
The following will hold for θ(r, t) and ω(r, t):

θ = tF (−c1, r0, r1) + A2(c1), ω = F (−c1, r0, r1)

in the elastic region r1 ≤ r ≤ R and

θ = tF (−c1, r0, r) + A3(c1), ω = F (−c1, r0, r)

in the domain of viscoplastic flow r0 ≤ r ≤ r1.

When the angular velocity of the external cylinder becomes equal to ω̃, the plastic flow will begin
in the basic material as well. We have in this case:

θ = tF (−c2, r0, r1) +
(
t − t′1

)
F1(−c2, r1, x2) + A2(c2), ω = F (−c2, r0, r1) + F1(−c2, r1, x2)
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Fig. 3. Distribution of the rotation angle in dependence on the radius under the rotation of
the external rigid cylinder

in the elastic region x2 ≤ r ≤ R;

εp
rϕ =

1
η1

(c2/r
2 − k1), prϕ =

t − t′1
η1

(c2/r
2 − k1),

θ = tF (−c2, r0, r1) + (t − t′1)F1(−c2, r1, r) + A2(c2), ω = F (−c2, r0, r1) + F1(−c2, r1, r)

in the domain of the viscoplastic flow r1 ≤ r ≤ x2; and

εp
rϕ =

1
η2

(c2/r
2 − k2), prϕ =

t

η2
(c2/r

2 − k2),

c2 = k1x
2
2, θ = tF (−c2, r0, r) + A3(c2), ω = F (−c2, r0, r)

in the domain of the viscoplastic flow r0 ≤ r ≤ r1.

When the external cylinder rotates in the opposite direction, there are observed the same effects
as when the internal cylinder does. In Fig. 3, there is given the distribution of the rotation angle during
the entire deformation process.

3. THE LUBRICANT LAYER IS LOCATED
NEXT TO THE EXTERNAL RIGID CYLINDER

Let us consider the case when the layer of a non-Newtonian lubricant is located next to the external
rigid surface; i.e., it occupies the domain r1 ≤ r ≤ R, whereas the deformation takes place due to rotation
of the internal rigid surface. In order for the plastic flow to begin in the lubricant layer, it is necessary that√

k1/k2 > r1/r0; otherwise, the viscoplastic flow would develop in the basic material, whereas the layer
would deform elastically. Let the geometric dimensions ensure the fulfilment of the above inequality.
Then, in the conditions of elastic equilibrium, the displacement field is determined by the formulas
ur = r(1 − cos θ), uϕ = r sin θ and

θ = A4(c), A4(c) =
c

2μ2
(1/R2 − 1/r2)

in the layer r1 ≤ r ≤ R and

θ = A5(c), A5(c) =
c

2μ2

(
1/R2 − 1/r2

1

)
+

c

2μ1

(
1/r2

1 − 1/r2
)

in the domain r0 ≤ r ≤ r1.
Using the plasticity condition written as σrϕ|r=r1 = −k2, we find the rotation angle of the internal

rigid cylinder under which the plastic flow starts in the layer

θ0 =
k2

2μ2

(
1 − r2

1/R
2
)

+
k2

2μ1

(
r2
1/r

2
0 − 1

)
. (3.1)
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Under further rotation of the internal cylinder, there develops a domain of viscoplastic flow r1 ≤
r ≤ x1(t). In this case, integrating the equilibrium equations and using the continuity condition for
displacements, velocities, and stresses, we have the following:

σrϕ = c1/r
2, ω = 0, c1 = c(t1), θ = A4(c1)

in the elastic domain x1 ≤ r ≤ R;

εp
rϕ =

1
η2

(k2 + c1/r
2), prϕ =

t

η2
(k2 + c1/r

2),

c1 = −k2x
2
1, θ = tF (c1, r, x1) + A4(c1), ω = F (c1, r, x1)

in the domain of the viscoplastic flow r1 ≤ r ≤ x1; and

θ = tF (c1, r1, x1) + A5(c1), ω = F (c1, r1, x1)

in the elastic domain r0 ≤ r ≤ r1.
The boundary of the viscoplastic flow domain is found by solving the equation

ω(r0, t1) = F (c1, r1, x1).

We assume that the location and the size of the lubricant layer are chosen so that the boundary x1(t)
reaches the surface of the external rigid cylinder prior to the viscoplastic flow starting in the basic
material; i.e., there holds the condition

F (−k2R
2, r1, R) < F

(
− k1r

2
0, r1, r0

√
k1/k2

)
.

Then the two regions remain in the material: the region of elastic deformation r0 ≤ r ≤ r1 and the region
r1 ≤ r ≤ R in which the irreversible deformations continue to accumulate. In this case, the functions
θ(r, t) and ω(r, t) have the form

θ = tF (c1, r, R) + A4(c1), ω = F (c1, r, R)

in the region of viscoplastic flow r1 ≤ r ≤ R;

θ = tF (c1, r1, R) + A5(c1), ω = F (c1, r1, R)

in the elastic region r0 ≤ r ≤ r1.
The limit value of the rotation velocity of the internal cylinder under which the basic material deforms

elastically can be obtained by ω̃ = F (−k1r
2
0, r1, R). If the rotation velocity of the cylinder exceeds this

value then, in the neighborhood of the internal rigid wall, beginning from time t′1, there will develop
a domain of viscoplastic flow r0 ≤ r ≤ x2. In the domains r1 ≤ r ≤ R and x2 ≤ r ≤ r1, there will hold
the same relations as before; in the domain r0 ≤ r ≤ x2 we find

εp
rϕ =

1
η1

(k1 + c2/r
2), prϕ =

t

η1
(k1 + c2/r

2), c2 = −k1x
2
2,

θ =
(
t − t′1

)
F1(c2, r, x2) + tF (c2, r1, R) + A5(c2), ω = F1(c2, r, x2) + F (c2, r1, R).

For the elastoplastic boundary x2(t) we will obtain the equation

ω(r0, t2) = F1(c2, r0, x2) + F (c2, r1, R).

Let the internal rigid cylinder rotate in the opposite direction starting from time t′2. Let us assume
that, at this time, the entire lubricant layer is plastically flowing; whereas, the basic material is deforming
only elastically; i.e., the rotation velocity of the rigid cylinder does not exceed ω̃. At time of complete
unloading, we have:

θ = t′2F (c3, r, R), ω = 0, c3 = c
(
t′2

)

in the region with unchanging plastic deformations r1 ≤ r ≤ R;

θ = t′2F (c3, r1, R), ω = 0

in the elastic region r0 ≤ r ≤ r1.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 6 No. 4 2012



440 BURENIN et al.

Fig. 4. Distribution of the rotation angle in dependence on the
radius under the rotation of the internal rigid cylinder

The rotation angle on which the internal cylinder is to be rotated in order for the plastic flow to start
again on the surface r = r1 is given by the value

θ2 = θ
(
r0, t

′
3

)
= t′2F (c4, r1, R), c4 = k2r

2
1.

Integrating the equilibrium equations in the three domains, we infer

εp
rϕ = 0, prϕ =

t′2
η2

(k2 + c3/r
2), θ = t′2F (c3, r, R) + A4(c5), ω = 0, c5 = k2x

2
3

in the domain with unchanging plastic deformations x3 ≤ r ≤ R;

εp
rϕ =

1
η2

(c5/r
2 − k2), prϕ =

t

η2
(c5/r

2 − k2) +
t′2
η2

(k2 + c3/r
2),

θ = t′2F (c3, r, R) − tF (−c5, r, x3) + A4(c5), ω = F (−c5, x3, r)

in the domain of the viscoplastic flow r1 ≤ r ≤ x3; and

θ = t′2F (c3, r1, R) − tF (−c5, r1, x3) + A5(c5), ω = F (−c5, x3, r1)

in the elastic domain r0 ≤ r ≤ r1.
In time, the boundary x3(t) reaches the external rigid surface r = R. Then irreversible deformations

accumulate in the layer r1 ≤ r ≤ R. When the rotation velocity of the internal rigid cylinder becomes
equal to ω̂ = F (−k1r

2
0, R, r1), a plastic flow region will develop near the internal surface r = r0. The

absolute value |ω̂| of the angular velocity of the internal cylinder necessary for the beginning of plastic
flow coincides with ω̃ for the first turn. The graphs of the rotation angle at various times are given in
Fig. 4 (r0/R = 0.5 and r1/R = 0.8).

Now, let the external cylinder rotate, whereas let the internal one be rigidly fixed. For reversible
deformation, using the adhesion condition on the motionless cylinder, we obtain

θ = A6(c), A6(c) =
c

2μ2

(
1/r2

1 − 1/r2
)

+
c

2μ1

(
1/r2

0 − 1/r2
1

)

in the layer r1 ≤ r ≤ R;

θ = A7(c), A7(c) =
c

2μ1
(1/r2

0 − 1/r2)

in the domain r0 ≤ r ≤ r1.
The value of the rotation angle of the external rigid cylinder, under which the plasticity condition

holds on the internal surface of the layer r = r1 and the plastic flow starts, is determined by (3.1). The
developing region of the viscoplastic flow will be bounded by the surfaces r = r1 and r = x1(t). In the
conditions of quasistatic approximation, we find:

θ = tF (−c1, r1, x1) + A6(c1), ω = F (−c1, r1, x1)
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Fig. 5. Distribution of the rotation angle in dependence on the
radius under the rotation of the external rigid cylinder

in the elastic domain x1 ≤ r ≤ R;

εp
rϕ =

1
η2

(c1/r
2 − k2), prϕ =

t

η2
(c1/r

2 − k2), c1 = k2x
2
1,

θ = tF (−c1, r1, r) + A6(c1), ω = F (−c1, r1, r)

in the region of the viscoplastic flow r1 ≤ r ≤ x1; and

θ = A7(c1), ω = 0

in the elastic domain r0 ≤ r ≤ r1.
We obtain the following equation to determine the elastoplastic boundary:

ω(R, t1) = F (−c1, r1, x1).

Let the geometric dimensions be selected so that the plastic flow in the basic material begins when the
boundary x1(t) has not yet reached the external surface r = R. In this case, beginning from time t = t′1,
the equilibrium equations should be integrated in the four domains. Using the continuity of velocities
and displacements, we infer

θ = tF (−c1, r1, x1) + (t − t1)F1(−c1, r0, x2) + A6(c1), ω = F (−c1, r1, x1) + F1(−c1, r0, x2)

in the elastic domain x1 ≤ r ≤ R;

εp
rϕ =

1
η2

(c1/r
2 − k2), prϕ =

t

η2
(c1/r

2 − k2), c1 = k2x
2
1,

θ = tF (−c1, r1, r) + (t − t1)F1(−c1, r0, x2) + A6(c1), ω = F (−c1, r1, r) + F1(−c1, r0, x2)

in the domain of the viscoplastic flow r1 ≤ r ≤ x1;

θ = (t − t1)F1(−c1, r0, x2) + A7(c1), ω = F1(−c1, r0, x2)

in the elastic domain x2 ≤ r ≤ r1; and

εp
rϕ =

1
η1

(c1/r
2 − k1), prϕ =

t − t′1
η1

(c1/r
2 − k1), c1 = k2x

2
1 = k1x

2
2,

θ = (t − t1)F1(−c1, r0, r) + A7(c1), ω = F1(−c1, r0, r)

in the domain of the viscoplastic flow r0 ≤ r ≤ x2.
At time t = t′2 the boundary x1(t) will reach the external surface r = R. In addition, in the domains

r1 ≤ r ≤ R, x2 ≤ r ≤ r1, and r0 ≤ r ≤ x2, the previous dependencies hold. As in the above problems,
we consider the deformation of the material under the rigid cylinder rotation in the opposite direction.
The distribution of the rotation angle is shown in Fig. 5 (r0/R = 0.4 and r1/R = 0.8) at the times of the
beginning of flow in the layer, t = t0, and of the flow beginning in the basic material, t = t′1; at time t′2
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when the boundary x1 reaches the surface r = R (from this time on, the external cylinder rotates in the
opposite direction); at time t∗ of complete unloading; at time t′3 of the beginning of the secondary flow for
r = r1; at time t′4 of the beginning of the secondary flow for r = r0; and at time t′5 when the boundaries
of the new regions of the viscoplastic flow reach the surfaces r = R and r = x2

(
t′2

)
, correspondingly.

REFERENCES
1. E. N. Lee, “Elastic-Plastic Deformation at Finite Strains,” Trans. ASME J. Appl. Mech. 36 (1), 1–6 (1969).
2. V. I. Kondaurov, “On Equations of a Viscoelastoplastic Medium with Finite Deformations,” Prikl. Mekh. i

Tekhn. Fiz. No. 4, 133–139 (1982).
3. S. Nemat-Nasser, “On Finite Deformation Elasto-Plasticity,” Internat. J. Solids Structures 18 (10), 857–

872 (1982).
4. V. I. Levitas, Large Elastoplastic Deformations of Solids under High Pressure (Naukova Dumka, Kiev,

1987) [in Russian].
5. G. I. Bykovtsev and A. V. Shitikov, “Finite Deformations of Elastoplastic Media,” Dokl. Akad. Nauk 311 (1),

59–62 (1990).
6. V. P. Myasnikov, “Equations of Motion of Elastoplastic Solids under Heavy Strains,” Vestnik Dal’nevost.

Otdel. Ross. Akad. Nauk No. 4, 8–13 (1996).
7. A. A. Rogovoi, “Constitutive Relations for Finite Elastic-Inelastic Strains,” Prikl. Mekh. i Tekhn. Fiz. 46 (5),

138–149 (2005) [J. Appl. Mech. Tech. Phys. 46 (5), 730–739 (2005)].
8. A. D. Chernyshev, “Defining Equations of an Elastoplastic Solid under Finite Strains,” Izv. Ross. Akad. Nauk

Mekh. Tverd. Tela No. 1, 120–128 (2000).
9. A. A. Pozdeev, P. V. Trusov, and Yu. I. Nyashin, Large Elastoplastic Deformations: Theory, Algorithms,

and Applications (Nauka, Moscow, 1986) [in Russian].
10. A. A. Burenin, G. V. Bykovtsev, and L. V. Kovtanyuk, “A Simple Model of Finite Strains in an Elastoplastic

Medium,” Dokl. Akad. Nauk 347 (2), 199–201 (1996) [Phys. Dokl. 41 (3), 127–129 (1996)].
11. A. A. Burenin and L. V. Kovtanyuk, Elastic Effects under Intensive Irreversible Deformation (Dal’nevost.

Gos. Tekhn. Univ., Vladivostok, 2011) [in Russian].
12. B. D. Annin and G. P. Cherepanov, An Elastoplastic Problem (Nauka, Novosibirsk, 1983) [in Russian].
13. A. A. Burenin, L. V. Kovtanyuk, and M. V. Polonik, “Possibility of a Secondary Plastic Flow under General

Unloading of an Elastoplastic Medium,” Dokl. Akad. Nauk 375 (6), 767–769 (2000).
14. A. A. Burenin, L. V. Kovtanyuk, and M. V. Polonik, “The Formation of a One-Dimensional Residual Stress

Field in the Neighborhood of a Cylindrical Defect in the Continuity of an Elastoplastic Medium,” Prikl. Mat.
i Mekh. 67 (2), 316–325 (2003) [J. Appl. Math. Mech. 67 (2), 283–292 (2003)].

15. L. V. Kovtanyuk, “About Punching Shear of a Viscoelastoplastic Material Through a Solid Round Cylindrical
Matrix,” Dokl. Akad. Nauk 400 (6), 764–767 (2005).

16. A. A. Burenin, L. V. Kovtanyuk, and A. S. Ustinova, “On Accounting for the Elastic Properties of a Non-
Newtonian Viscosimetric Flow,” Prikl. Mekh.i Tekhn. Fiz. 49 (2), 143–151 (2008).

17. V. A. Znamenskii and D. D. Ivlev, “On Equations of an Elastoplastic Solid under Piecewise Linear Poten-
tials,” Izv. Akad. Nauk SSSR, Mekh. i Mashinostroenie No. 6, 114–118 (1963).

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 6 No. 4 2012


