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Abstract—Within the framework of the theory of large elastoplastic deformations generalized to
the case of viscous and thermophysical properties of materials, we give a solution of a sequence
of coupled problems on the onset and development of a flow in a material layer filling the gap
between two rigid coaxial cylindrical surfaces under increasing pressure drop and on the subsequent
flow deceleration under decreasing pressure gradient. Here the thermophysical and deformation
processes are coupled, and the yield stress depends on temperature. Heat production due to the
layer material friction against the rough cylindrical boundary surfaces is taken for an additional heat
source.
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1. INTRODUCTION

The problem analyzed in this article is one of a number of problems that technological practice poses
before fundamental mechanics. The statement of such a problem has arisen from the need to model,
for example, the processes occurring in the material during high-velocity forming, high-temperature
pressing in powder metallurgy, pressing models in high-precision casting [1]. In all these processes,
deformations acquired by materials are large. Along with the elastic properties of materials, plastic
and viscous properties must be taken into account. At the same time, the material being processed
is noticeably heated both by deformation and by friction against the rigid walls. Therefore, the problem
turns out not to be isothermal and is considered within the framework of the theory of large deformations
of media with elastic, plastic, and viscous properties. We assume that the yield stress depends on
temperature, but the deformation, heat release, and heat transfer are not separated. Note that currently
there are few publications dealing with the coupled problems of the theory of large elastoviscoplastic
deformations [2–6]. For the mathematical model of large deformations we take the model proposed
earlier in [7] and generalized to the nonisothermal case in [8, 9].
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2. BASIC MODEL RELATIONS
In the rectangular spatial Euler coordinate system xi, the kinematics of large deformations of the

medium [9] is determined by the dependences

dij = mij + pij −
1
2

mikmkj − mikpkj − pikmkj + mikpkmmmj ,

Dmij

Dt
= εij − εp

ij −
1
2

[(εik − εp
ik + zik)mkj + mik(εkj − εp

kj − zkj)],

Dpij

Dt
= εp

ij − pikε
p
kj − εp

ikpkj,
Dnij

Dt
=

dnij

dt
− riknkj + nikrkj ,

εij =
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(vi,j + vj,i), vi =
dui

dt
=

∂ui

∂t
+ ui,jvj , ui,j =

∂ui

∂xj
,

mij = eij + α(T − T0)δij , rij =
1
2

(vi,j − vj,i) + zij(εsk,msk).

(2.1)

In relations, (2.1) dij are the components of the Almansi strain tensor, mij − 1
2 mikmkj and pij are

its reversible and irreversible components; D/Dt is the used objective time derivative of tensors reduced
for an arbitrary tensor nij ; εp

ij are the plastic strain rate tensor components, rij are the components of
the rotation tensor; zij is the nonlinear component of the rotation tensor, which was completely written
out in [9]; vi and ui are the components of the vectors of velocities and displacements of medium points.
The thermal expansion is considered reversible, thus, eij is the linear part of the elastic strain tensor, α is
the coefficient of linear expansion, T is the current temperature, T0 is the room temperature of the body
in the free state.

We accept the condition that the volume change of the medium is determined only by its thermal
expansion and it is mechanically incompressible. Then we have

σij =

⎧
⎪⎨

⎪⎩

−Pδij + (1 + 3αT0θ)−1 ∂W

∂dik
(δkj − 2dkj) for pij ≡ 0,

−P1δij + (1 + 3αT0θ)−1 ∂W

∂mik
(δkj − mkj) for pij �= 0,

θ = (T − T0)T−1
0 .

(2.2)

In the formulas (2.2) σij are the components of the Euler-Cauchy stress tensor, P and P1 are
the unknown functions of the additional hydrostatic pressure. In deriving relations (2.2) we used the
assumption that the density of the free energy distribution ψ depends only on reversible deformations,
thus, we have W = ρ0ψ (ρ0 is the density of the material in the free state). For the elastic potential W
we take its expansion in the Maclaurin series with respect to the free state at temperature T0. Assuming
the isotropy condition, we obtain

W =−2μJ1−μJ2+bJ2
1 +(b−μ)J1J2−χJ3

1 +ν1J1θ+ν2θ
2−ν3J1θ

2−ν4J
2
1θ−ν5J2θ−ν6θ

3+· · · , (2.3)

Jk =

{
Lk for pij = 0,

Ik for pij �= 0,
L1 = dkk, L2 = dikdki, I1 = ckk, I2 = cikcki, cij = mij − 1

2 mikmkj.

Here μ is the shear modulus, b, χ, νm (m = 1, 2, . . . , 6) are the thermomechanical constants [10].
Taking into account the Fourier’s law and according to the entropy balance equation, we obtain the

heat conduction equation (q is the thermal diffusivity coefficient):
in the region of reversible deformation

(1 + β1θ + β2djj)
∂θ

∂t
+ β3εijdji = q

∂2θ

∂xj∂xj
,
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;

(2.4)

in the flow region

(1 + β1θ + β2cjj)
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∂t
+ β3(εij − εp

ij)cji = q
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− 1

2ν2
σijε

p
ij ; (2.5)
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