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Nonlinear Analysis of Outward Propagating Hydrodynamically 
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Abstract—In the context of the large thermal-expansion approximation, we derive an equation
describing outward propagating f lame under conditions of Darrieus–Landau instability. We show that
the second-order theory leads to system of two evolution equations for the f lame front perturbations
and for the potential of the unburned mixture f low. In the limiting case of long evolution, the system
of equations can be reduced to one equation similar to the Sivashinsky equation.
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INTRODUCTION
The dynamics of a premixed flame propagation in a large volume of a combustible mixture is one of

the interesting fundamental problems of combustion theory, which is associated with many important
applications, from gas combustion in internal combustion engines to large-scale explosions of gas mix-
tures. The growth of the f lame total surface due to hydrodynamic instability increases the speed of f lame
propagation and determines the dynamics of energy release, changes in pressure and other characteristics
in the system with gas combustion. Therefore, modeling of f lame front dynamics is an urgent problem for
practical applications. Numerical simulations of a cellular f lame dynamics and the associated disturbed
gas f low require significant computational costs, which depend on the size of the computational domain.
For example, simulations of a diverging cylindrical f lame [1], show that the number of cells at the f lame
front is proportional to the f lame radius. Therefore, the number of grid nodes required to calculate the gas
flow field increases as a square of the f lame radius. One possible way to reduce the amount of computation
is to use approximate evolutionary equations for the variables given at the f lame front, which avoids com-
putations in the space surrounding the f lame. In the linear approximation, the evolutionary equation
describes an unlimited growth of the perturbations that follows from the classical Landau–Darrieus the-
ory of linear hydrodynamic instability [2, 3]. To describe the nonlinear stabilization of the perturbation’s
growth and flame propagation velocity, it is necessary to take into account nonlinear terms [4]. The solu-
tion of this problem for arbitrary values of the gas expansion coefficient , (where  and  are
the densities of the combustible gas and the combustion products) encounters significant difficulties asso-
ciated with the nonlinearity of the equations describing vortex f low in the combustion products. Assuming
that the gas expansion coefficient is close to unity  , one can obtain nonlinear integro-differ-
ential equation, known as the Sivashinsky equation [5], which is widely used not only in combustion the-
ory, but also in other areas of physics. A remarkable property of this equation is that it admits a whole fam-
ily of exact analytical solutions [6–8] and describes many complex nonlinear processes, for example, the
self-acceleration of a diverging f lame [1]. The assumption about the smallness of the expansion coefficient
makes it problematic to obtain quantitative estimates of the propagation velocity and the other character-
istics of cellular f lame, since under normal conditions the typical gas expansion coefficients have values
of . For mixtures of combustible gas with liquid droplets or during liquid combustion, the
parameter E can reach essentially larger values due to liquid evaporation. In this paper, we consider case
of large gas expansion coefficients and use an asymptotic expansion in which the quantity  is
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Fig. 1. Scheme of outward propagating cylindrical f lame.
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a small parameter. Note that in the general case of a finite value of the expansion coefficient, there is no
solution to the problem. In the limiting case, when the expansion coefficient is close to unity, the solution
to the problem was obtained in the work of Sivashinsky [5]. Gas combustion with such an expansion coef-
ficient is not typical, however, the qualitative behavior of systems with a finite expansion coefficient
turned out to be very close to that which follows from the analysis with an expansion coefficient close to
unity. This fact served as motivation for considering the limiting case, when the expansion coefficient is
not close to unity, but, on the contrary, is very large.

The paper considers the case of a diverging cylindrical f lame, for which the f lame front evolutionary
equation is derived in the approximation of a large gas expansion coefficient.

MATHEMATICAL MODEL

The equations for the gas velocity , where V and U are, respectively, the radial and tangential
velocity components in a cylindrical coordinate system (r, ϕ), read:

(1)

(2)

Since the f lame front separates two regions with different densities ρ, the equations of motion differ in
the combustible mixture and the combustion products. In the following, indices 1 and 2 are used to mark,
the combustible mixture and the combustion products, respectively. The f lame front is determined by
expression , where  the radius of expanding cylindrical f lame.
The  is the ratio of gas densities or gas expansion coefficient and  is the speed of plane lam-
inar f lame. The scheme of the f lame is given in Fig. 1.

Boundary conditions at the f lame front  have the form:

(3)

(4)

(5)

(6)

Here  is the f lame front velocity along the normal to the f lame surface, which is towards combustible
mixture.  and  are the normal and tangential components of gas velocity, respectively. We use the phe-
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nomenological dependence of the f lame propagation velocity  on the local curvature of the two-dimen-
sional f lame front :

(7)

Here σ is the Markstein length [9] and  is the speed of plane f lame. In the case σ > 0, such depen-
dence leads to the stabilization of small-scale perturbations. The solutions of Eqs. (1), (2) with boundary
conditions (3)–(6) for unperturbed cylindrical f lame  read:

(8)

EQUATIONS FOR PERTURBED FLAME
The asymptotic method applied in paper [10] for the case of plane f lame is used to derive the equation

for the perturbed cylindrical f lame at large gas expansion coefficients. Equations (1), (2) and the bound-
ary conditions (3)–(6) are written for the dimensionless components of the gas velocities , u1, 2 and
pressures :

(9)

Here  and ε is considered to be a small parameter ε  1. The radius and time are dimensioned,

correspondingly, by Markstein length σ and by characteristic time . The nondimensional radius is

denoted as = r/σ, and the nondimensional time is . The f lame front in nondimensional variables

reads η = , where . The velocities , u1, 2 and pressures  are related with the small

amplitude f lame front perturbations. In the case of fresh mixture, denoted by index 1, the variables
 and V =  are substituted in the Eqs. (1), (2) to obtain the equations

for nondimensional perturbations. The equations for combustion products perturbations are obtained by
substitutions  and V =  into Eqs. (1), (2). Then, the all terms having
smallness ε in comparison with others are discarded in resulting equations.

The f low in the fresh mixture is determined by potential Φ, satisfying the Laplace equation, and the
velocity components have the form:

(10)

In the case of a cylindrical f lame  the radial velocity  can be obtained from solution of the
Laplace equation for the potential Φ:

, where  is linear integral operator and

 is the value of the potential Φ at the cylindrical f lame front. The calculations of the velocities and
pressure approximate values at the perturbed f lame front can be obtained by method proposed in
paper [10]. The relation of radial velocity and the potential at the perturbed flame front follows from
boundary condition (3) and it can be written as:

(11)
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In the same way, one can calculate the tangential velocity  and using Bernoulli’s law, the pressure :

(12)

In the approximation of large gas expansion coefficients, the equations for combustion products
become quasi-stationary and do not contain time derivatives. This approximation essentially simplifies
the solution of the problem. In particularly, the pressure can be divided into two components

, one of which is similar to pressure in potential f low , and the other

component  appears due to vortex f low and it depends only on the variable .

Substituting fresh gas velocity  in the form (11) into the boundary condition (3), one can obtain the
first equation relating the function ψ with the f lame front disturbances F:

(13)

The second equation for ψ and F can be obtained by the same method as used in [10] to derive the
equation for perturbed plane f lame:

(14)

Introducing new variables X = F – ψ and Y = F + ψ, one can get that the variable X exponentially
increases whereas Y exponentially decreases and tends to zero in the course of long-time evolution.
The condition Y = F + ψ = 0 means that F = –ψ, and in this case equation for f lame front perturbation
takes the form similar to the Sivashinsky equation:

(15)

Note that the physical interpretations of the solutions in the limiting cases E – 1  1 and E  1 are
different. When the gas expansion coefficient is small, the nonlinear equation describes the evolution of
flame front perturbations F propagating in potential f low both in the combustible mixture and in the com-
bustion products. In the case of large gas expansion coefficients, the nonlinear equation allows describing
the vortex f low in the combustion products. The Eq. (15) in dimension variables read:

(16)

The results of the numerical solution of an equation of the same type as Eq. (16) can be found in [11].

CONCLUSIONS

A nonlinear equation describing f lame front dynamics was derived in approximation of large thermal-
expansion coefficient. We show that the second-order theory leads to system of two evolution equations
for the f lame front perturbations and for the potential of the unburned mixture f low. In the limiting case
of long evolution, the system of equations can be reduced to one equation similar to Sivashinsky equation
obtained early for the case of small gas expansion coefficients. It allows transferring all the results,
obtained earlier for small gas expansion coefficients, to the case of large gas expansion coefficients with
appropriate normalization of the problem parameters. The fact that the resulting nonlinear equations for
the f lame front in both limiting cases are identical, up to normalization, suggest hypothesis about identical
qualitative dynamic behavior of the f lame in the process of long evolution, independent of the gas expan-
sion coefficient value. This allows, for example, transferring the results of studies of hydrodynamic insta-
bility [12, 13], obtained using the Sivashinsky equation, to the case of large gas expansion coefficients.
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