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Abstract. The present study is devoted to the set of boundary value problems in the
frameworks of coupled thermoelastoplasticity under axial symmetry conditions for a composite
circular cylinder. Throughout the paper the conventional Prandtl–Reuss elastic–plastic model
generalised on the thermal effects is used. The yield stress is assumed by linear function of
the temperature. The plastic potential is chosen in the form of Tresca yield criterion and the
associated plastic flow rule is derived. The adding process of a heated cylinder to another is
simulated. The coupled thermal stresses are calculated during processes of cooling and material
unloading. The elastic-plastic borders positions are calculated and plastic flow domains are
localized. Numerical results are graphically analysed.

Introduction
The modern mechanical engineering deals with the additive manufacturing technologies based
on the adding new material at the high temperature gradient. The process of adding new
parts of the material can be considered as a process of discrete material growth used in the
technology of additive manufacturing. The mechanics of growing bodies [1–4] can be considered
as a theoretical basis for solving such problems. In [5, 6], boundary value problems of the
growth of heavy viscoelastic bodies were solved with the gravitational forces presence. The
thermal state of a growing viscoelastic sphere was discussed in [7, 8]. The Assemblages made
by the method of hot fitting have become the most widespread in technological practice for
the stressed joints [9–13]. Usually such joints are carried out on the cylindrical surfaces of the
assembly elements, when the outer part is heated before fitting and the inner one is cooled
or remains at room temperature. Simplicity of the method of connection is coupled with the
possibility to transmit significant loading pressure with different magnitudes and directions.
The effective approximate engineering approaches and numerical simulation were developed
to prescribe the stress strain state and material behaviour during the fitting process in the
assembled nodes. The main drawback of the existing approaches for fitting process simulations
is the insufficiently consistent consideration of the plastic flow and irreversible deformations in
the assembled materials. The accumulation of irreversible deformations during plastic flow and
subsequent unloading and cooling is significantly affect to the formation of the residual stresses
and the final tightness of assembled part.

http://creativecommons.org/licenses/by/3.0
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The solutions of the boundary value problem of stresses computations in circular compounds
during the hot fitting process taking into account the plastic properties of the material was
considered in [10–13]. The present study deals with a new solution obtained in the frameworks
of plastic flow theory and under conditions of complete plasticity and repeated plastic flows
during the cooling of the assembled material.

1. Boundary value problem statement. Thermoelastic equilibrium
Consider the boundary value problem in the frameworks of the thermal stresses theory during
an assembly of two infinitely long hollow cylinders made from the same thermoelastoplastic
material. At the referential time t = 0 the inner circular cylinder with inner and outer radii
R0 and R1 respectively is heated under referential temperature T1. The outer circular cylinder
under temperature T2 > T1 with inner and outer radii R1 and R2 respectively. The referential
displacements in the material of the cylinders are assumed to be zero. The inner cold cylinder
is inserted into the heated outer cylinder. The stresses are accumulated providing tightness
in the assembled parts as a result of the thermal conductivity process through the contact
surface r = R1. It is necessary to calculate the temperature field arising from heat conduction
to determine the stress-strain states in the cylinders during the fitting. The heat conduction
equation in the cylindrical coordinate system under conditions of axial symmetry can read by

rṪ = κ(T,r + rT,rr). (1)

wherein κ is the thermal diffusivity, overdot denotes the time derivative, index after the comma
denotes partial derivative with respect to the spatial coordinate. We numerically integrate
equation (1) under boundary and initial conditions

T (r, 0) =

{
T1 R0 ≤ r ≤ R1,

T2 R1 < r ≤ R2,

T,r(R0, t) = 0,

T,r(R2, t) = 0.

(2)

Fig. 1 illustrates the temperature field distribution at different times in the assembled cylinders.
Note that the conditions for an ideal thermal contact between the connected cylinders, i.e. the
equality of temperatures and heat fluxes at the surface r = R1 are automatically satisfied in the
numerical solution of the heat equation (1) under boundary and initial conditions (2).

Deformations dij in the cylinders material are assumed infinitesimal and are separated into
reversible part eij and irreversible pij one additively by formula

dij = eij + pij , drr = ur,r, dϕϕ = r−1ur. (3)

The stresses are fully determined by reversible deformations according to the Duhamel–
Neumann law [14–16]

σrr = (λ+ 2µ)err + λ(eϕϕ + ezz) − (3λ+ 2µ)∆,
σϕϕ = (λ+ 2µ)eϕϕ + λ(err + ezz) − (3λ+ 2µ)∆,
σzz = (λ+ 2µ)ezz + λ(eϕϕ + err) − (3λ+ 2µ)∆.

(4)

Here λ, µ are the Lame parameters. The thermal expansion function ∆ for considered problem
can be furnished by

∆(r, 0) = α(T (r, t) − T (r, 0)) =

{
α(T (r, t) − T1) R0 ≤ r ≤ R1,

α(T (r, t) − T2) R1 < r ≤ R2.
(5)
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Figure 1. Temperature field in the assembled cylinders. T̃ = (T − T1)(T2 − T1)
−1.

Equation (5) gives the zero deformations and discplacements at time of the cylinder
connection (fitting time) t = 0.

The equilibrium equation in the cylindrical coordinate system under conditions of axial
symmetry reads as

σrr,r + r−1(σrr − σϕϕ) = 0. (6)

The solution of the coupling equations (1), (4), (3), (6) under conditions (2), (5) and pij = 0
describe the thermoelastic equilibrium of assembled cylinders.

σ(i)rr = −2ω

r2

∫ r

R0

∆(ρ, t)ρdρ+Ai(t) +
Bi(t)

r2
,

σ(i)ϕϕ =
2ω

r2

∫ r

R0

∆(ρ, t)ρdρ+Ai(t) −
Bi(t)

r2
− 2ω∆(r, t),

σ(i)zz =
λAi(t)

(λ+ µ)
− 2ω∆(r, t).

(7)

Index (i) denote the inner (1) or outer (2) cylinders. Unknown time dependent functions Ai(t),
Bi(t) can be derived from the system of boundary conditions

σ
(1)
rr (R0, t) = 0, σ

(1)
rr (R1, t) = σ

(2)
rr (R1, t),

σ
(2)
rr (R2, t) = 0, u

(1)
r (R1, t) = u

(2)
r (R1, t).

(8)

Finally the solution of equations (8) can be obtained in the following form

Ai =
2ω

(R2
2 −R2

0)

∫ R2

R0

∆(ρ, t)ρdρ, Bi = − 2ωR2
0

(R2
2 −R2

0)

∫ R2

R0

∆(ρ, t)ρdρ. (9)

2. Plastic flow in the outer cylinder
The plastic flow occurs on the contact surface of the outer cylinder and is propagated with the
temperature field aligning inside the assembled material. We note that in some cases under a
sufficiently high initial temperature decreasing a plastic flow can occur on the contact surface of
the inner cylinder, but numerous simulations have shown that the level of plastic deformation in
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these cases is small in compared with deformations arising from the contact pressure and does
not cause a noticeable influence on the distribution of residual stresses and deformations.

Let the time t = t
(2)
p is the time of the plastic flow beginning on the inner surface of the

outer cylinder. The plastic potential in the form of Tresca yield criterion is more preferable for
considered problem

σ
(2)
ϕϕ − σ

(2)
rr = 2k(r, t). (10)

At a time t > t
(2)
p the plastic flow domain R1 < r < a2(t) in the outer cylinder, where

a2(t) denotes the elastic plastic border. Equation for stresses computation can be obtained by
integration of the equilibrium equation (6) under condition (10):

σ(2)rr = 2

∫ r

R0

k(ρ, t)

ρ
dρ+ C2(t),

σ(2)ϕϕ = 2

∫ r

R0

k(ρ, t)

ρ
dρ+ C2(t) + 2k(r, t),

σ(2)zz =
λ

(λ+ µ)

(
C2(t) + 2

∫ r

R0

k(ρ, t)

ρ
dρ+ k(r, t)

)
− γ∆(r, t).

(11)

Note that the lower limit of integration in the equations (7), (11) which valid for the outer
cylinder is the inner radius (R0 < R2) of the inner cylinder. For this case the functions
Ai(t), Bi(t), Ci(t)... have a simplest form [17–20].

Equations for radial displacement and plastic deformation in the plastic flow domain R1 <
r < a2(t) read by

u(2)r =
C2(t)r

2(λ+ µ)
+
D2(t)

r
+

r

(λ+ µ)

∫ r

R0

k(ρ, t)

ρ
dρ+

γ

µr

∫ r

R0

∆(ρ, t)ρdρ,

p(2)rr =
(λ+ 2µ)k(r, t)

2µ(λ+ µ)
+
γ∆(r, t)

2µ
− γ

µr2

∫ r

R0

∆(ρ, t)ρdρ− D2(t)

r2
,

p
(2)
zz = 0, p

(2)
ϕϕ = −p(2)rr .

(12)

Unknown time dependent functions in virtue of the condition (8) and continuity conditions
for radial stresses and displacement on the elastic plastic border a2. Hereafter solutions for these
functions are not shown because of their cumbersomeness. The position of the elastic plastic

border is calculated by a numerical solution of equation p
(2)
rr (a2, t) = 0, for a certain time t > t

(2)
p .

3. Plastic flow in the inner cylinder
The further temperature field rearranging in the assembled cylinders can lead to plastic flow

on the inner surface of the inner cylinder at time t = t
(1)
p [21–24]. Then the stresses keep the

following form of the Tresca yield criterion [17,18,21]:

σ(1)rr − σ(1)zz = 2k(r, t). (13)

Consequently for a time t > t
(1)
p it is possible a plastic flow domain development R0 < a1(t) in

the material of the inner cylinder. The elastic domain is separated from the domain of irreversible
deformation by the elastic plastic border a1(t). We can derived the plastic incompressibility
conditions from the plastic flow rule associated with the yield criterion (13)

pzz + prr = 0, pϕϕ = 0; (14)
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The relations between the radial components of the reversible and irreversible strain tensors
and the radial displacement are obtained from equations (3), (4), (14), (13) in following form

err =
1

2

(
ur,r +

k

µ

)
, prr =

1

2

(
ur,r −

k

µ

)
, (15)

Then the differential equations for the radial displacement furnishes taking into account
equilibrium equation (6) and equation (15) as follows

(rur,r),r −
η2ur
r

+
(rk),r

(λ+ µ)
− γr∆,r

µ
= 0, η =

√
(λ+ 2µ)

(λ+ µ)
. (16)

The function of the radial displacement is the solution of the equation (16) for the plastic flow
domain

ur =
γ

2µη

(
(η + 1)

rη

∫ r

R1

ρη∆(ρ, t)dρ+ (η − 1)rη
∫ r

R1

∆(ρ, t)

ρη
dρ

)
−

− 1

2(λ+ µ)

(
rη
∫ r

R1

k(ρ, t)

ρη
dρ+

1

rη

∫ r

R1

ρηk(ρ, t)dρ

)
+ C(t)rη +

D(t)

rη
.

(17)

The plastic deformation then is found by virtue of equations (15) as

prr =
η

4(λ+ µ)

(
1

r(η+1)

∫ r

R1

ρηk(ρ, t)dρ− r(η−1)

∫ r

R1

k(ρ, t)

ρη
dρ

)
+
γ∆(r, t)

2µ
+

+
γ

4µ

(
r(η−1)

∫ r

R1

∆(ρ, t)

ρη
dρ− (η + 1)

r(η+1)

∫ r

R1

ρη∆(ρ, t)dρ

)
− η2k(r, t)

2µ
+

+
ηr(η−1)C(t)

2
− ηD(t)

2r(η+1)
,

pzz = −prr, pϕϕ = 0.

(18)

Let derive the equations for stresses (4) in the plastic flow domain by using equations (15), (17)
and (18)

σrr = σzz + 2k(r, t) = ν1r
(η−1)C(t) − ν2D(t)

r(η+1)
−

− 1

2(λ+ µ)

(
ν1r

(η−1)

∫ r

R1

k(ρ, t)

ρη
dρ− ν2

r(η+1)

∫ r

R1

ρηk(ρ, t)dρ

)
+

+
γ

2ηµ

(
(η − 1)ν1r

(η−1)

∫ r

R1

∆(ρ, t)

ρη
dρ− (η + 1)ν2

r(η+1)

∫ r

R1

ρη∆(ρ, t)dρ

)
,

ν1 = (ηλ+ λ+ ηµ), ν1 = (ηλ− λ+ ηµ),

σϕϕ = υ1r
(η−1)C(t) +

υ2D(t)

r(η+1)
− γ∆(r, t) − λk(r, t)

(λ+ µ)
−

− 1

2(λ+ µ)

(
υ1r

(η−1)

∫ r

R1

k(ρ, t)

ρη
dρ+

υ2

r(η+1)

∫ r

R1

ρηk(ρ, t)dρ

)
+

+
γ

2ηµ

(
(η − 1)υ1r

(η−1)

∫ r

R1

∆(ρ, t)

ρη
dρ+

(η + 1)υ2

r(η+1)

∫ r

R1

ρη∆(ρ, t)dρ

)
,

υ1 = (λ+ ηλ+ 2µ), υ2 = (λ− ηλ+ 2µ).

(19)
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4. Complete plasticity in the inner cylinder
Note also that there is the possibility of the complete plasticity state in the frameworks of Tresca
yield criterion [21,22,25,26]. For this case we have two valid plastic flow conditions{

σ
(1)
rr − σ

(1)
zz = 2k(r, t),

σ
(1)
rr − σ

(1)
ϕϕ = 2k(r, t).

(20)

The stresses in the complete plasticity domain (R0 < r < b1(t)) are furnished by following
relations

σ(1)rr = −2

∫ r

R1

k(ρ, t)

ρ
dρ+ E(t),

σ(1)ϕϕ = σ(1)zz − 2

∫ r

R1

k(ρ, t)

ρ
dρ− 2k(r, t) + E(t).

(21)

The plastic incompressibility condition prr + pzz + pϕϕ = 0 implies the coupling between the
total and reversible deformations as follows

ur,t +
u
(1)
r

r
= err + eϕϕ + ezz. (22)

Substitute the elastic deformation according to (4) and (21) in equation (22) and integrate
obtained equation in the complete plasticity domain

u(1)r = − 1

(3λ+ 2µ)

(
1

r

∫ r

R1

k(ρ, t)ρdρ+ 3r

∫ r

R1

k(ρ, t)

ρ
dρ− 3rE(t)

2

)
+

+
F (t)

r
+

3

r

∫ r

R1

∆(ρ, t)ρdρ.

(23)

Plastic deformations functions taking into account equation (23) in the domain (R1 < r <
b1(t)) reads by

p(1)rr =
1

(3λ+ 2µ)

(
1

r2

∫ r

R1

k(ρ, t)ρdρ−
∫ r

R1

k(ρ, t)

ρ
dρ+

E(t)

2

)
−

−2k(r, t)

γ
− 3

r2

∫ r

R1

∆(ρ, t)ρdρ+ 2∆(r, t) − F (t)

r2
,

p(1)ϕϕ = − 1

(3λ+ 2µ)

(
1

r2

∫ r

R1

k(ρ, t)ρdρ+

∫ r

R1

k(ρ, t)

ρ
dρ− E(t)

2

)
+

+
k(r, t)

γ
+

3

r2

∫ r

R1

∆(ρ, t)ρdρ− ∆(r, t) +
F (t)

r2
,

p(1)zz =
1

(3λ+ 2µ)

(
2

∫ r

R1

k(ρ, t)

ρ
dρ− E(t)

)
+
k(r, t)

γ
− ∆(r, t).

(24)

The satisfaction of the present Tresca yield criterion forms (10), (13) and (20) depends on
the cylinder size and referential temperature gradient. Fig. 2 illustrates the thermal stresses in
the assembled cylinders after full temperature equalization with the complete plasticity domain
in the inner cylinder.
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Figure 2. Thermal stresses in the composite cylinder under plastic flow. R0R
−1
1 = 0.4,

R2R
−1
1 = 1.8.

5. Cooling to the referential temperature
Let consider the cooling process of the cylinders. We assume that the heat conduction with the
external continuum is slow and the temperature field in the material of the cylinders corresponds
to a uniform distribution slowly decreasing to the referential temperature of the inner cylinder.

Thus the compressive stress σ
(1)
zz during the cooling should decrease. Along with this, the value

of the yield stress in the material of both cylinders increases. Consequently, the unloading occurs
in the material of the inner cylinder during cooling (similar cases were discussed in [27–30]). The
stress strain state of the outer cylinder due to increasing yield stress is also satisfies the unloading
conditions for a certain temperature diapason. However a repeated plastic flow causing can begin

as a cause of a high stress level σ
(2)
z z corresponding to a stretching of the outer cylinder along

the z axis.
Introduce notations p

(1)
ij and p

(2)
ij for the irreversible deformations of the cylinders computing

at the time of final temperature equalization. These functions are vanished in elastic domains
[31, 32]. Differential equation for the radial components of the stress tensor can be obtained
from equations (4), (3), (6) in the form

τ

r

(
p(i)rr − p(i)ϕϕ − rp(i)ϕϕ,r

)
− 2µλp

(i)
zz,r

(λ+ 2µ)
− 2ω∆,r − 3σ(i)rr,r − rσ(i)rr,rr = 0, (25)

where τ =
4µ(λ+ µ)

(λ+ 2µ)
.

Integration of the equation (25) under condition p
(1)
zz = −(p

(1)
rr + p

(1)
ϕϕ), allows us to express



8

1234567890 ‘’“”

TPCM-2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 991 (2018) 012060  doi :10.1088/1742-6596/991/1/012060

the stresses in the inner cylinder by formulae

σ(1)rr =
τ

2

(∫ r

R0

p
(1)
rr (ρ)

ρ
dρ−

∫ r

R0

p
(1)
ϕϕ(ρ)

ρ
dρ

)
− 2ω

r2

∫ r

R0

∆(ρ, t)ρdρ−

− 2µ2

(λ+ 2µ)r2

(∫ r

R0

p(1)rr (ρ)ρdρ+

∫ r

R0

p(1)ϕϕ(ρ)ρdρ

)
+X1(t) +

Y1(t)

r2
,

σ(1)ϕϕ =
τ

2

(∫ r

R0

p
(1)
rr (ρ)

ρ
dρ−

∫ r

R0

p
(1)
ϕϕ(ρ)

ρ
dρ

)
+

2ω

r2

∫ r

R0

∆(ρ, t)ρdρ+

+
2µ2

(λ+ 2µ)r2

(∫ r

R0

p(1)rr (ρ)ρdρ+

∫ r

R0

p(1)ϕϕ(ρ)ρdρ

)
+X1(t) −

Y1(t)

r2
+

+
2λµp

(1)
rr (r)

(λ+ 2µ)
− 2ω∆(r, t) − 2µp(1)ϕϕ(r),

σ(1)zz =
2λµ

(λ+ 2µ)

(∫ r

R0

p
(1)
rr (ρ)

ρ
dρ−

∫ r

R0

p
(1)
ϕϕ(ρ)

ρ
dρ

)
+ τp(1)rr (r)+

+2µp
(1)
ϕϕ +

λX1(t)

(λ+ µ)
− 2ω∆(r, t).

(26)

The radial displacement in this case is calculated as

u(1)r =
ω

µr

∫ r

R0

∆(ρ, t)ρdρ+
rX1(t)

2(λ+ µ)
− Y1(t)

2µr
+

µr

(λ+ 2µ)

(∫ r

R0

p
(1)
rr (ρ)

ρ
dρ−

−
∫ r

R0

p
(1)
ϕϕ(ρ)

ρ
dρ+

1

r2

∫ r

R0

p(1)rr (ρ)ρdρ+
1

r2

∫ r

R0

p(1)ϕϕ(ρ)ρdρ

)
.

(27)

The stresses in the outer cylinder in virtue of conditions p
(2)
rr = −p(2)ϕϕ and p

(2)
zz = 0 reads by

σ(2)rr = τ

∫ r

R1

p
(2)
rr (ρ)

ρ
dρ− 2ω

r2

∫ r

R0

∆(ρ, t)ρdρ+X2(t) +
Y2(t)

r2
,

σ(2)ϕϕ = τ

(∫ r

R1

p
(2)
rr (ρ)

ρ
dρ+ p(2)rr (r)

)
+X2(t)−

−2ω

r2

(∫ r

R0

∆(ρ, t)ρdρ− r2∆(r, t)

)
− Y2(t)

r2
,

σ(2)zz =
2λµ

(λ+ 2µ)

(
2

∫ r

R1

p
(2)
rr (ρ)

ρ
dρ+ p(2)rr (r)

)
+
λX2(t)

(λ+ µ)
− 2ω∆(r, t).

(28)

The displacement in the outer cylinder in the time is satisfied to following equation

u(2)rr =
2µr

(λ+ 2µ)

∫ r

R1

p
(2)
rr (ρ)

ρ
dρ+

ω

r

∫ r

R0

∆(ρ, t)ρdρ+
rX2(t)

2(λ+ µ)
− Y2(t)

2µr
. (29)

Unknown time dependent functions Xi(t), Yi(t) can be found by boundary conditions (8).
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6. Repeated plastic flow
The stress strain state at a time t = tr can rich the yield surface on the inner surface of the
outer cylinder as the assembled construction is cooling down. In this case Tresca yield criterion
is valid in the following form

σ
(2)
zz − σ

(2)
rr = 2k. (30)

From this time t > tr the repeated plastic flow domain is propagated in the outer cylinder
(R1 < r < b2(t)). This repeated irreversible deformations are caused by cylinder stretching
under cooling [23,28].

To compute the stress-strain state parameters in this domain it is necessary to take into

account the accumulated repeated irreversible deformations p
(2)
rr . Thus the equilibrium equation

in terms of displacement is furnished by

(rur,r),r −
η2ur
r

− (rk + rp
(2)
rr ),r

(λ+ µ)
− γr∆,r

µ
= 0, (31)

We can solve the equation (31) and rewrite the displacement function by

ũr =
γ

2µη

(
(η + 1)

rη

∫ r

R1

ρη∆(ρ, t)dρ+ (η − 1)rη
∫ r

R1

∆(ρ, t)

ρη
dρ

)
−

+
1

2(λ+ µ)

(
rη
∫ r

R1

k(ρ, t)

ρη
dρ+

1

rη

∫ r

R1

ρηk(ρ, t)dρ

)
+

+
µ

2(λ+ µ)

(
rη

(η + 2)

η

∫ r

R1

p
(2)
rr (ρ)

ρη
dρ+

1

rη
(η − 2)

η

∫ r

R1

ρηp(2)rr (ρ)dρ

)
+

+P2(t)r
η +

Q2(t)

rη
.

(32)

Hereafter the tilde denote the functions determining in the repeated plastic flow domain. The
plastic deformations by virtue of the solution (32) are calculated by formula

p̃rr =
η

4(λ+ µ)

(
r(η−1)

∫ r

R1

k(ρ, t)

ρη
dρ− 1

r(η+1)

∫ r

R1

ρηk(ρ, t)dρ

)
+
γ∆(r, t)

2µ
+

+
γ

4µ

(
r(η−1)

∫ r

R1

∆(ρ, t)

ρη
dρ− (η + 1)

r(η+1)

∫ r

R1

ρη∆(ρ, t)dρ

)
+
η2k(r, t)

2µ
+

+
µη

4(λ+ µ)

(
r(η−1) (η + 2)

η

∫ r

R1

p
(2)
rr (ρ)

ρη
dρ− 1

r(η+1)

(η + 2)

η

∫ r

R1

ρηp(2)rr (ρ)dρ

)
+

+
ηr(η−1)P2(t)

2
− ηQ2(t)

2r(η+1)
+
η2p

(2)
rr (r)

2
,

p̃zz = −p̃rr(r, t) + p
(2)
rr (r), p̃ϕϕ = −p(2)rr (r).

(33)

The components of the stress tensor are derived by the known displacement (32) and plastic



10

1234567890 ‘’“”

TPCM-2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 991 (2018) 012060  doi :10.1088/1742-6596/991/1/012060

deformations (33) as

σ̃rr = −σ̃zz − 2k(r, t) = ν1r
(η−1)P2(t) −

ν2Q2(t)

r(η+1)
−

+
1

2(λ+ µ)

(
ν1r

(η−1)

∫ r

R1

k(ρ, t)

ρη
dρ− ν2

r(η+1)

∫ r

R1

ρηk(ρ, t)dρ

)
+

+
γ

2ηµ

(
(η − 1)ν1r

(η−1)

∫ r

R1

∆(ρ, t)

ρη
dρ− (η + 1)ν2

r(η+1)

∫ r

R1

ρη∆(ρ, t)dρ

)
+

+
µ

2(λ+ µ)

(
ν1r

(η−1) (η + 2)

η

∫ r

R1

p
(2)
rr (ρ)

ρη
dρ− ν2

r(η+1)

(η − 2)

η

∫ r

R1

ρηp(2)rr (ρ)dρ

)
,

ν1 = (ηλ+ λ+ ηµ), ν1 = (ηλ− λ+ ηµ),

σ̃ϕϕ = υ1r
(η−1)P2(t) +

υ2Q2(t)

r(η+1)
− γ∆(r, t) +

λk(r, t)

(λ+ µ)
+ γp(2)rr (r)+

+
1

2(λ+ µ)

(
υ1r

(η−1)

∫ r

R1

k(ρ, t)

ρη
dρ+

υ2

r(η+1)

∫ r

R1

ρηk(ρ, t)dρ

)
+

µ

2(λ+ µ)

(
ν1r

(η−1)(η + 2)

∫ r

R1

p
(2)
rr (ρ)

ρη
dρ+

ν2

r(η+1)
(η − 2)

∫ r

R1

ρηp(2)rr (ρ)dρ

)
+

+
γ

2ηµ

(
(η − 1)υ1r

(η−1)

∫ r

R1

∆(ρ, t)

ρη
dρ+

(η + 1)υ2

r(η+1)

∫ r

R1

ρη∆(ρ, t)dρ

)
,

υ1 = (λ+ ηλ+ 2µ), υ2 = (λ− ηλ+ 2µ).

(34)

Unknown time dependent function Xi(t), Yi(t), P2(t), Q2(t) can be found from the linear
system of the boundary conditions (8) and continuity conditions of the radial stress and
displacement at the boundary of the repeated plastic flow domain b2(t). The location of this

border is numerically calculated as the solution of the equation p̃rr(b2, t) = p
(2)
rr (r). The repeated

plastic flow is propagated until the full cooling assembled cylinders to the referential temperature.
After that the stress strain state riches the neutral loading state. On the Figure 3 the residual
stresses are shown at the time of full cooling down. The neutral loading state as we can see
on the Fig. 3 occupies the domain R1 < r < b2 with valid yield criterion σ̃zz − σ̃rr = 2k0 and
constant irreversible deformations.

Concluding remarks
The sequence of the considered boundary value problems may be violated by the cylinder size,
material properties and referential temperature gradient. The extremal influence on the final
contact pressure is induced by the irreversible deformation rate under yield criterion in form
σzz − σrr = 2k. The dependence of the yield stress on temperature makes it possible to predict
lower values of the contact pressure contrary to studies without the plastic properties accounting
or with the constant yield stress. Therefore, to increase the value of the contact pressure it
is necessary to reduce the initial temperatures in both parts of the assembled construction.
Obviously, in this case the yield stress have the greatest value and, consequently, the level of
the contact pressure is higher.
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Figure 3. Thermal stresses in composite cylinder under cooling. R0R
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1 = 1.8.
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