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 A B S T R A C T

Superparamagnetism in systems with magnetostatic interaction is evaluated. Equations describing the dynamics 
of particle flipping under the influence of a magnetic field are presented, formulas for the relaxation time 
and magnetic susceptibility of particles are derived, and the frequency factor is estimated. Experimental data 
demonstrating a decrease in the susceptibility peak with increasing field are also discussed.
1. Introduction

In recent decades, there has been significant interest in nanoma-
terials due to their unique physical and chemical properties, making 
them suitable for a wide range of applications. Superparamagnetic 
nanoparticles are among the most intensively studied nanomaterials. 
These particles exhibit unique properties because their anisotropy en-
ergy can be comparable to the energy of thermal fluctuations, allowing 
for the reversal of their magnetic moment in a period defined by the 
Neel-Brown formula. Consequently, their magnetization dynamics are 
significantly dependent on the temperature regime and their particle 
size.

Relaxation phenomena in superparamagnetic particles, associated 
with processes that occur when the external magnetic field or tem-
perature changes, are under active study. These processes impact the 
particles’ response time and magnetic characteristics, which are signif-
icant for their practical applications. Early theoretical descriptions of 
magnetic relaxation relied on Langevin approximations, as well as the 
works of Kramers and Kolmogorov. A significant contribution to the 
development of the theory was made by Shliomis, whose work laid 
the foundations for understanding the dynamics of magnetization and 
relaxation in systems of superparamagnetic particles. In his seminal 
work, ‘‘Magnetic Fluids’’, Shliomis [1] suggested that the relaxation 
of magnetization in superparamagnetic systems is governed by two in-
dependent mechanisms (Néel relaxation and Brownian relaxation); his 
hypothesis enabled the explanation of the dynamics of magnetization in 
alternating fields and became the basis for interpreting experiments on 
the magnetic response of colloids. From the Fokker–Planck equation, 
he derived a macroscopic equation of motion for the magnetic moment 
of a suspension. Relaxation times were found to be proportional to 
the viscosity of the liquid and decreasing functions of the Langevin 
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argument. Shliomis’s work also demonstrated that particle anisotropy 
critically affects relaxation processes [2].

Kalmykov and Coffey made a significant contribution to the devel-
opment of the theory of magnetic relaxation (see the monograph ‘‘Re-
laxation Phenomena in Condensed Matter Physics’’ [3]). They devel-
oped an improved model for the relaxation time of superparamagnetic 
particles, taking into account the influence of external magnetic fields, 
anisotropy, and damping. This model allows for a description of the 
dynamics of magnetization over a wide range of conditions, accounting 
for the influence of dipole–dipole interactions in particle ensembles, 
which is particularly important for dense colloids and magnetic fluids. 
They proposed analytical solutions for the Langevin and Fokker–Planck 
equations, applicable to systems with strong anisotropy [4,5].

Poperechny and Raikher [6] developed a theory of ferromagnetic 
resonance (FMR) for superparamagnetic nanoparticles with arbitrary 
nonaxial anisotropy. Their approach enabled the interpretation of 
experimental data. They demonstrated that multicomponent spectra, 
characteristic of highly anisotropic particles in the athermal limit, are 
preserved in superparamagnetic particles up to a certain temperature. 
They also found that the orientational distribution of the easy mag-
netization axes is not a necessary condition for the appearance of 
multi-peak absorption spectra in superparamagnetic systems. In 2023, 
Poperechny [7] investigated the linear response of a superparamagnetic 
nanoparticle suspended in a liquid in the presence of a stationary bias 
field. He confirmed that at zero bias field, the frequency dependence 
of the imaginary component of the dynamic susceptibility (absorption 
spectrum) features two maxima if the anisotropy energy exceeds the 
thermal energy several times. The presence of these peaks results 
directly from magnetic nanoparticles’ bistability. He also showed that, 
in the presence of a bias field, the spectrum can acquire a third 
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maximum if the Brownian rotation of the suspended particle slows 
down compared to the establishment of internal magnetic equilibrium 
within it.

The works of Eberbeck and Ludwig, who considered stochastic 
particle dynamics while accounting for non-Gaussian fluctuations and 
colored noise, should also be acknowledged. In particular, they ap-
plied the generalized Fokker–Planck equations to systems with multiple 
relaxation time scales. These approaches proved to be especially signifi-
cant when analyzing nonlinear magnetic susceptibility, which is crucial 
to the examination of EPR and NMR signals [8,9].

Numerical methods, particularly the Monte Carlo and Langevin 
dynamics methods for modeling interacting ensembles, have made 
significant progress. The studies by P. Ilg [10–13] and D. Berkov [14–
16] demonstrate the possibility of quantitatively describing magne-
tization dynamics, including hysteresis and nonlinear susceptibility. 
The approach used in [17] is based on the Fokker–Planck–Brown 
equation. The authors incorporate interparticle interactions and mag-
netic anisotropy to model the dynamic response of superparamagnetic 
nanoparticles in an alternating field, illustrating how these factors 
affect susceptibility and relaxation time. Kuntscher et al. [18] utilize 
micromagnetic modeling, which helps in studying the evolution of 
relaxation time in the presence of interparticle interactions, which 
is crucial for understanding the hyperthermia of magnetic fluids. Of 
particular interest is the study of the blocking temperature of super-
paramagnetic particles, defined as the temperature below which the 
particles exhibit collective magnetic behavior with hysteresis. Monte 
Carlo simulations of these processes allow for detailed investigations 
of the magnetic properties of particles and comparisons of the results 
with experimental data, contributing to a deeper understanding of the 
physical mechanisms underlying superparamagnetism. In particular, 
Gogoi et al. [19] investigated the blocking temperature in the context 
of new synthetic approaches for creating superparamagnetic particles. 
However, all these approaches require significant computational re-
sources and are generally limited by the number of particles and time 
scales.

Recent studies indicate that superparamagnetic particles can be 
used for targeted drug delivery, particularly in oncology, as they can 
deliver microRNA and other therapeutic agents directly to tumor cells. 
For instance, the effects of highly hydrophilic superparamagnetic par-
ticles on macrophage function have been investigated, which is crucial 
for understanding their interactions with biological systems [20,21].

Thus, the study of superparamagnetic particles remains a significant 
area of modern science, presenting numerous opportunities for further 
fundamental and applied research.

The simplest classical method for describing the properties of mag-
netic systems with exchange interaction is the molecular field theory. 
However, it cannot fully account for the entire variety of magnetic 
ordering types. One approach that expands application possibilities 
while retaining the molecular field theory’s simplicity is the method 
of random fields of exchange interaction, which has been developed by 
many authors. The general approach to determining the distribution 
density of random fields was formulated by Chandrasekhar and was 
successfully utilized to study the magnetic properties of interacting 
particle systems in the works of Anderson, Berkov, Meshkov, and 
Shcherbakov [22–24]. In 1992, Belokon [25] proposed applying the 
method of random fields of exchange interaction for dilute magnets 
with direct exchange. In 2002, Belokon and Nefedev [26] determined 
an approximate distribution density of random fields in the form of a 
normal distribution. In this case, the mean value and variance were 
defined by the law of particle interaction. This could involve either 
direct exchange or indirect interaction. The advantage of this approach 
over conventional molecular field theory is that it allows for a quantita-
tive description of phase transitions in systems with any exchange law, 
takes into account the possibility of diffusion, and enables estimation of 
the critical concentration of interacting particles below which a phase 
transition is impossible [27–31].
2 
In this paper, the method is used to describe the behavior of 
the magnetic susceptibility of a system of superparamagnetic particles 
with magnetostatic interaction at low temperatures. Most previous 
works (e.g., Shliomis, Kalmykov, Coffey, and Poperechny) focused 
either on relaxation processes considering the dipole–dipole interaction 
or on solutions of the Langevin and Fokker–Planck equations. However, 
they did not account for the contribution of the exchange interaction 
through a stochastic approach, especially with a variable distribution 
of anisotropy and size parameters. The proposed model considers the 
heterogeneity of the nanoparticle ensemble, particularly the size distri-
bution and anisotropic barriers, which aligns the theory more closely 
with real experimental systems.

The article demonstrates that fluctuations in the exchange interac-
tion between particles significantly affect the position of the magnetic 
susceptibility peak (blocking temperature) and the shape of the tem-
perature dependence of magnetization. An analytical and numerically 
stable description of the temperature evolution of the magnetization 
in an ensemble of superparamagnetic particles is proposed, factoring 
in the intensity of exchange interactions and their fluctuations. This 
approach broadens the applicability of classical models of superparam-
agnetism, such as the Brown, Langevin, or Kalmykov models, to more 
complex systems exhibiting collective effects. The article is the first to 
describe, within the random fields’ method of exchange interaction, 
the transition from independent to collective behavior in ensembles 
of superparamagnetic particles with variable intensity of exchange 
interaction, both qualitatively and quantitatively.

2. The method of random interaction fields

The method of random interaction fields is a method of molecular 
(effective) field, which is considered as a random variable [26]. The 
Heisenberg Hamiltonian of a system of interacting particles (ions) has 
the form: 
 = −

∑

𝑖<𝑘
𝐽𝑖𝑘𝑆𝑖𝑆𝑘 − 𝑔𝜇𝐵𝐻𝑙

∑

𝑖
𝑆𝑖, (1)

where 𝑆𝑖 are the components of the spin vector, 𝑔 is the Lande mul-
tiplier, 𝐻 is the external magnetic field, and 𝜇𝐵 is the Bohr magne-
ton. Since 𝑔𝜇𝐵𝑆𝑖 is the magnetic moment of the ion 𝑚, the classical 
Hamiltonian can be written as follows: 
 = −

∑

𝑖<𝑘
𝐽𝑖𝑘𝑚𝑖𝑚𝑘 −𝐻𝑙

∑

𝑖
𝑚𝑖. (2)

The summation in the first term is over all pairs of particles. In 
the Ising model, the magnetic moment can have only two possible 
orientations: +𝑚 (up), and −𝑚 (down). If we assume the possibility 
of replacing exchange interacting particles at some lattice sites with 
‘‘frozen-in’’ ‘‘non-magnetic’’ impurities with a density of 1 − 𝑝, we 
obtain a model with dilution across sites. The term 𝑚𝑖𝐽𝑖𝑘𝑚𝑘 can be 
considered as the energy of the magnetic moment 𝑚𝑖 in the exchange 
interaction field 𝐻𝑖𝑘 = 𝐽𝑖𝑘𝑚𝑘. In the molecular field theory (exchange 
interaction field), a separate ion is considered 𝑚𝑖 ≡ 𝑚 interacting with 
the environment. If 𝐻 = 0, then 
 = −

∑

𝑖
𝑚𝑖

∑

𝑘
𝐽𝑖𝑘𝑚𝑘 = −

∑

𝑖
𝑚𝑖

∑

𝑘
𝐻𝑖𝑘 = −

∑

𝑖
𝑚𝑖𝐻𝑖, (3)

where 𝐻𝑖 =
∑

𝑘 𝐽𝑖𝑘𝑚𝑘 is the total field of exchange interaction on 
𝑚𝑖, 𝜑𝑘 = 𝐻𝑖𝑘 the index 𝑖 omitted.

The dependence of the exchange integral on the distance determines 
the number of terms to consider in the sum. This sum is a random 
variable, the distribution density of which, in some approximation, as 
shown in our studies [25,26], has the form: 

𝑊 (𝐻,𝑀) = 1
√

𝜋𝐵
exp

{

−

[

𝐻 −𝐻0𝑀
]2

𝐵2

}

, (4)

where the average value of ⟨𝐻⟩ = 𝐻0𝑀 and dispersion of 2𝜎2 = 𝐵2

are expressed in terms of the 𝑝 concentration of exchange-interacting 
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particles, the 𝜑𝑘 effective field of exchange interaction produced by 
an atom with number 𝑘, and configurationally and thermodynamically 
averaged magnetic moment 𝑀 as follows: 
𝐻0 = 𝑝

∑

𝑘
𝜑𝑘, 𝐵

2 = 2𝑝
[

1 −𝑀2𝑝
]
∑

𝑘
𝜑2
𝑘. (5)

The equation determining the dependence of relative average mag-
netic moment 𝑀 on temperature and the atomic concentration has the 
form: 

𝑀 = ∫ tanh
[𝑚𝐻
𝑘𝑇

]

𝑊 (𝐻,𝑀)d𝐻, (6)

where 𝑚 is the magnetic moment of the ion. 𝑊 (𝐻,𝑀) is a ‘‘smeared’’ 
𝛿 - function.

Then, Eq. (6) will be as follows: 

𝑀 = 1
√

𝜋𝐵 ∫ tanh

(

𝑚
(

𝐻 +𝐻0𝑀
)

𝑘𝑇

)

exp
(

−𝐻2

𝐵2

)

d𝐻. (7)

Simple estimates can be obtained by replacing the Gaussian distri-
bution function with approximate function 𝑓 (𝐻) : 

𝑓 (𝐻) =

{

0, 𝐻 > 𝐵, 𝐻 < −𝐵
1
2𝐵 , −𝐵 < 𝐻 < 𝐵.

(8)

Examples of the numerical solution of Eq.  (7) with exact and approx-
imate functions, from which it follows that near the phase transition 
points, where the 𝑀 values are small, the error in the calculations is 
insignificant, are given in [26].

For small 𝑀 values, in this case, we have that 

𝑀 = 1
2𝐵 ∫

𝐵

−𝐵
tanh

(

𝑚
(

𝐻 +𝐻0𝑀
)

𝑘𝑇

)

d𝐻. (9)

3. Preisach-Néel diagrams in the study of superparamagnetism

The Preisach–Néel diagram is an important tool for analyzing hys-
teresis phenomena in magnetic materials, including superparamagnetic 
particles. The diagram model was developed to describe the behavior 
of magnetic domains in ferromagnets but has been adapted to study 
superparamagnetism and other magnetic systems, demonstrating the 
versatility and power of the diagram in understanding complex mag-
netic phenomena. The Preisach–Néel diagram is based on the concept 
that a system of magnetic particles is considered a set of elementary 
hysteresis units known as hysterons. Each hysteron is a miniature 
magnetic domain that can switch between two stable states under 
the influence of an external magnetic field. These states have specific 
coercivities and magnetic field variations, which allows the modeling of 
the overall magnetic response of the system as the sum of the individual 
reactions of all hysterons.

In superparamagnetic systems, blocking temperature plays a key 
role because below this temperature, particles start to exhibit collec-
tive magnetic behavior with hysteresis. At the same time, above the 
temperature, the particles behave as independent dipoles and hysteresis 
disappears. The Preisach–Néel diagram allows modeling of this transi-
tion and an analysis of the changes in hysteresis properties at different 
temperatures. The Preisach model is also used for detailed modeling 
of the magnetic properties of superparamagnetic particles, including 
the effect of the frequency of magnetic field change and the inter-
actions between particles. This modeling is especially important for 
optimizing the magnetic properties of nanoparticles used in biomedical 
technologies.

Let us consider, in the framework of the Ising model, a system of 
ferromagnetic particles of the same volume 𝑉  distributed over critical 
fields of magnetization reversal 𝐻𝑐 in the interval 0 ≤ 𝐻𝑐 ≤ 𝐷 (𝐻𝑐 =
𝐾𝐼𝑠, where 𝐾 is the constant of shape anisotropy, 𝐼𝑠 is spontaneous 
magnetization, and 𝐷 is the maximum possible critical field). The axes 
of the easiest magnetization are oriented in one direction. Further, the 
external field acts in the same direction. Moreover, the hysteresis loop 
3 
Fig. 1. Preisach– Néel diagram for magnetic moments of particles in a state of 
equilibrium. The coordinates of the particle: 𝑎 = 𝐻𝑐 + 𝐻𝑖𝑛𝑡 and 𝑏 = 𝐻𝑐 − 𝐻𝑖𝑛𝑡, where 
𝐻𝑐 is the critical field of magnetization, 𝐻𝑖𝑛𝑡 is the field of magnetostatic interaction, 
𝐷 is the maximum possible critical field, 𝐵 is the maximum field of magnetostatic 
interaction.

Fig. 2. Preisach–Néel diagram for magnetic moments of particles in a state of 
nonequilibrium. In the upper region above the equilibrium line, particles with a 
magnetic moment directed downwards predominate; in the lower region, particles with 
a magnetic moment directed upwards predominate. 𝐻 is the external applied field that 
shifts the equilibrium line, 𝐷 is the maximum possible critical field, 𝐵 is the maximum 
field of magnetostatic interaction.

of the particles is rectangular. The field of magnetostatic interaction 
𝐻𝑖𝑛𝑡 is contained in the interval −𝐵 ≤ 𝐻𝑖𝑛𝑡 ≤ 𝐵, where 𝐵 is of the 
order 𝑝 ⋅ 𝐼𝑠. The relaxation time for such particles is comparable to 
experimental time. It is convenient to depict such a system on the 
Preisach–Néel diagram (Fig.  1), where the fields 𝑎 = 𝐻𝑐 + 𝐻𝑖𝑛𝑡 and 
𝑏 = 𝐻𝑐 −𝐻𝑖𝑛𝑡 act as the coordinates of the particle.

In a state of equilibrium on the line 𝑎 = 𝑏 the number of magnetic 
moments of particles oriented ‘‘up’’ 𝑁+ and ‘‘down’’ 𝑁− is the same; 
but as we move away from this line, the ratio 𝑁+ to 𝑁− changes. 
Furthermore, due to symmetry, the total magnetic moment will be 
equal to 0. Turning on a small field 𝐻 ≪ 𝐵 will lead to a shift in the 
line of equality 𝑁+ and 𝑁−, and a region responsible for the excess 
𝑁+will appear on the diagram 𝑁−. This is a region of uncompensated 
magnetic moments with a width 2𝐻 and a length 𝐷 (Fig.  2).

Therefore, the initial conditions are 

𝑁+ +𝑁− = 𝑁0, (10)

where 𝑁0 is the total number of particles. Over a period 𝑡, the situation 
will change to 
𝑑𝑁+ = −𝜆 𝑁 + 𝜆 𝑁 , (11)

𝑑𝑡 21 + 12 −
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𝑑𝑁−
𝑑𝑡

= −𝜆12𝑁− + 𝜆21𝑁+, (12)

𝑑𝑁0
𝑑𝑡

= 0, (13)

where 𝜆12 is the probability of the particle’s magnetic moment flipping 
from ‘‘bottom’’ to ‘‘up’’, 𝜆21 is the probability of the magnetic moment 
of a particle flipping from ‘‘top’’ to ‘‘bottom’’. The solution to systems 
(11) and (12) has the form 

𝑁+ = 𝐴 exp
[

−
(

𝜆12 + 𝜆21
)

𝑡
]

+
𝜆12

(

𝜆12 + 𝜆21
)𝑁0, (14)

where 1𝜏 = 𝜆12 + 𝜆21 and 𝜏 is the relaxation time.
When 𝑡 ≫ 𝜏, the first term becomes 0 and only the expression below 

remains: 

𝑁+ = 𝑁̃+ =
𝜆12

(

𝜆12 + 𝜆21
)𝑁0. (15)

Accordingly, based on formula (10): 

𝑁− =
𝜆21

(

𝜆12 + 𝜆21
)𝑁0. (16)

In our model, the average magnetic moment of magnetostatically in-
teracting particles is determined by the difference in the magnetic 
moments of particles oriented ‘‘up’’ and ‘‘down’’: 

𝑀 = 𝜇
(

𝑁+ −𝑁−
)

= 𝜇
𝜆12 − 𝜆21
(

𝜆12 + 𝜆21
)𝑁0, (17)

where 𝜇 is the magnetic moment of the particle 𝜇 = 𝐼𝑠𝑉 .

4. Superparamagnetism in a system with magnetostatic interac-
tion

As follows from experimental data  [32], at sufficiently low temper-
atures, the magnetic moment increases proportionally to log 𝑡, where 𝑡
is the time of action of the constant field 𝐻 . The ensemble of particles 
should have a wide spectrum of relaxation times, which is due to 
their spread over the volume and magnetization reversal fields 𝐻𝑐 . 
The probability of fluctuation is determined by the minimum work 𝑅
required to overcome the potential barrier: 

𝜆 = 𝑓0 exp
[

− 𝑅
𝑘𝑇

]

. (18)

Here, 𝑓0 is the frequency factor, and 𝑘 is the Boltzmann constant. In 
the absence of an external field, the critical value of the magnetization 
reversal field is 𝐻𝑐

2 . The external field 𝐻 and the interaction field 𝐻𝑖𝑛𝑡
either help or hinder the reversal of the magnetic moment, contributing 
to the work 𝑅. When the magnetostatic interaction field 𝐻𝑖𝑛𝑡 and the 
field 𝐻 are oriented ‘‘up’’, they help the particle overcome the barrier 
𝐻𝑐
2 , but hinder its reversal ’’down’’. In this case, the relaxation time 
𝜏, the magnetic moment of the particles, and its critical field will be 
related by the relation: 
1
𝜏
= 𝜆12 + 𝜆21, (19)

𝜆12 = 𝑓0 exp
[

−
𝜇
𝑘𝑇

(

𝐻𝑐
2

−
(

𝐻𝑖𝑛𝑡 +𝐻
)

)]

, (20)

𝜆21 = 𝑓0 exp
[

−
𝜇
𝑘𝑇

(

𝐻𝑐
2

+
(

𝐻𝑖𝑛𝑡 +𝐻
)

)]

. (21)

From expressions (19)–(21), it follows that 

1
𝑓0𝜏

= exp
[

−
𝜇𝐻𝑐
2𝑘𝑇

]

2 cosh

[

𝜇
(

𝐻𝑖𝑛𝑡 +𝐻
)

𝑘𝑇

]

. (22)

Critical fields of particles for which equilibrium has been established 
(precisely, 𝑡 = 𝜏 and 𝑡 is the time of action of field 𝐻) are: 

𝐻𝑐 =
2𝑘𝑇

(

ln
[

𝑓0𝑡
]

+ ln

[

2 cosh

[

𝜇
(

𝐻𝑖𝑛𝑡 +𝐻
)
]])

. (23)

𝜇 𝑘𝑇
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Fig. 3. Graphs of the dependence of the magnetic susceptibility of the 𝜒(𝑇 ) AuFe alloy 
with an iron concentration of 8% at field values 𝐻 = 10 𝑂𝑒 (black line), 𝐻 = 100 𝑂𝑒
(red line), experimental data [33] (blue line).

Expression (23) allows us to find the transition temperature of all par-
ticles to the superparamagnetism state depending on 𝐻𝑖𝑛𝑡 and 𝐻 , when 
the maximum field 𝐻𝑐 = 𝐷. As a well-known example of the behavior 
of such particles, we consider an AuFe alloy with an iron concentra-
tion of 8%; the experimental data and graphs of the initial magnetic 
susceptibility’s dependence on temperature are described in [33]. At 
low temperatures, the behavior of this alloy’s magnetic moment and 
spontaneous magnetization are independent of temperature. According 
to the theory of random interaction fields, at a temperature below the 
critical temperature, the leaky cluster is destroyed, and a system of 
finite-sized clusters consisting of iron ions is formed. The spontaneous 
magnetization of iron 𝐼𝑠 = 1700 𝑒𝑟𝑔 ⋅ 𝐺−1 ⋅ cm−3 [34]. The relaxation 
time for such clusters will be determined by the shape and number 
of particles. The average field of magnetostatic interaction is on the 
order of 𝑝𝐼𝑠 = 0.08 ⋅ 1700 = 𝐵 = 1360 𝑂𝑒. For an iron particle, the 
average magnetization reversal field is on the order of 1700 𝑂𝑒 since 
the shape anisotropy constant is on the order of unity (𝐻𝑐 = 𝐾𝐼𝑠 =
1 ⋅1700 = 1700 𝑂𝑒). However, for small particles, for which the number 
of surface ions is relatively large, the critical magnetization reversal 
field is significantly smaller [35]. The experimental point of maximum 
magnetic susceptibility given in [33] was taken as a guideline when 
choosing the critical field 𝐷 = 800 𝑂𝑒. The magnetic moment 𝜇 was 
found from the relation 2𝑘𝑇𝜇 ln

[

𝑡 ⋅ 1013 ⋅ 2 ⋅ cosh
[

𝐵𝜇
𝑘𝑇

]]

= 𝐷 + 𝐵 because, 
at this point, all the particles have passed into the superparamagnetic 
state. The Boltzmann constant 𝑘 = 1.38 ⋅ 10−16erg ⋅ K−1. There are 
various opinions in the literature regarding the frequency factor; in 
this paper, we associate it with the Debye temperature, which, for 
example, for gold or iron is of the order of 102 𝐾. The probability of an 
irreversible rotation of the magnetic moment of a cluster is determined 
by the "frequency of fluctuation attempts’’, which is associated with 
elastic oscillations of ions in the crystal lattice. By definition, the Debye 
frequency is the maximum possible frequency of the phonon spectrum. 
Therefore, we associate the frequency factor with the Debye frequency. 
Accordingly, from the expression, ℏ𝜔𝐷 = 𝑘𝑇𝐷, the estimate 𝜔𝐷 ∼ 𝑓0
is of the order of 1013𝑠−1. If we set 𝐻𝑖𝑛𝑡 = 0 and 𝐻 = 0, then, 
based on formula (23), the temperature of the transition of particles 
to the superparamagnetic state is 𝑇 ≈ 30 K, which corresponds to the 
experimental value obtained in the literature [33] and presented in 
(Fig.  3).

The average magnetic moment of magnetostatically interacting par-
ticles 𝑀 , per particle for a given 𝐻𝑖𝑛𝑡 can be found from formulas 
(17)–(21): 

𝑀 = 𝜇
𝜆12 − 𝜆21
( ) = 𝜇 tanh

[

𝜇
(

𝐻𝑖𝑛𝑡 +𝐻
)
]

. (24)

𝜆12 + 𝜆21 𝑘𝑇
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The number of particles in the Preisach–Néel diagram from fields 
𝑑𝐻𝑐 𝑑𝐻𝑖𝑛𝑡 is determined from the relationship 

𝑑𝑁 =
𝑁0
2𝐵𝐷

𝑑𝐻𝑐 𝑑𝐻𝑖𝑛𝑡. (25)

In the framework of the random interaction field method, the total 
magnetic moment of a system of particles at time 𝑡 is defined as 

𝑀0=
𝜇𝑁0

2𝐵𝐷∫

𝐵

−𝐵

2𝑘𝑇
𝜇

tanh

[

𝜇
(

𝐻𝑖𝑛𝑡+𝐻
)

𝑘𝑇

]

ln

[

2𝑓0𝑡 cosh

[

𝜇
(

𝐻𝑖𝑛𝑡+𝐻
)

𝑘𝑇

]]

𝑑𝐻𝑖𝑛𝑡.

(26)

At a fixed time 𝑡, the dependence of susceptibility 𝜒 to temperature𝑇
can be considered as 𝜕𝑀∕𝜕𝐻 , taking into account that in this tem-
perature range, 𝐼𝑠(𝑇 ) = 𝐼𝑠(0). Fig.  3 shows graphs of the dependence 
of the magnetic susceptibility of the 𝜒(𝑇 ) AuFe alloy with an iron 
concentration of 8% at field values 𝐻 = 10 𝑂𝑒 (black line), 𝐻 = 100 𝑂𝑒
(blue line). The experimental graph corresponds to the graph obtained 
as a result of the calculation at 𝐻 = 10 𝑂𝑒. At temperatures of up 
to 30 K, particles acquire a magnetic moment in the direction of the 
applied field; and the process extends to the maximum value 𝐻𝑐 . It 
is apparent that after reaching the temperature at which all particles 
pass into the superparamagnetic state, further change in susceptibility 
is reduced due to the randomization of the directions of the magnetic 
moments of the particles due to an increase in temperature. If the field 
is turned on, then an increase in the field will cause a fall in the peak 
of susceptibility, correlating with the experimental data for the AuFe 
alloy with an iron concentration of 2% (see Figure in [33]). For clarity 
of comparison with experimental data, it is convenient to choose the 
total number of particles 𝑁0 = 2 ⋅ 1015.

As shown in formula (26), the time required to reach the superpara-
magnetic state 2𝑓0 cosh

[ 𝜇
(

𝐻𝑖𝑛𝑡+𝐻
)

𝑘𝑇

]

𝑡 depends on the fields 𝐻𝑖𝑛𝑡 and 𝐻 . 
Therefore, at 𝐻 > 𝐵 this time decreases, which leads to reaching the 
maximum value of the magnetic moment at a low temperature.

5. Estimation of the magnitude of the frequency factor

The formulas obtained allow us to estimate the magnitude of the fre-
quency factor. Let the magnetization of the particle system be obtained 
over a long period 𝑡0 at a temperature 𝑇  and with the field turned on: 

𝐻𝑐 =
2𝑘𝑇
𝜇

ln
[

2𝑓0𝑡0
]

. (27)

Magnetization is destroyed by the temperature 𝑇  during the same 
period. If heating is carried out instantaneously from temperature 𝑡0
to 𝑇 + 𝛥𝑇 , then, from the formula, it will follow that 

𝐻𝑐 =
2𝑘(𝑇 + 𝛥𝑇 )

𝜇
ln
[

2𝑓0𝑡1
]

. (28)

The time of destruction of magnetization 𝑡1 will be short, that is, the 
destruction process will be accelerated. Solving Eqs. (27) and (28) 
together, we obtain the expression 

ln
[

𝑡0
𝑡1

]

= 𝛥𝑇
𝑇

ln
[

2𝑓0𝑡0
]

. (29)

Formula (29) allows us to find the frequency factor 𝑓0 for known values 
𝑡0, 𝑡1, 𝑇 , and 𝛥𝑇 .

Because the heating process takes a certain duration, the time 
interval 𝑡0 for the formation of magnetization must be large enough so 
that the transition to the decay curve is completed during the process 
of magnetization destruction at 𝑇 + 𝛥𝑇 .

6. Conclusion

This study was conducted within the framework of a simple super-
paramagnetism model in systems with magnetostatic interaction. It has 
been established that:
5 
1. The simple model evaluated allows one to accurately describe 
the behavior of the magnetic susceptibility of a system of su-
perparamagnetic particles with magnetostatic interaction at low 
temperatures.

2. Magnetic susceptibility significantly depends on an external field 
when the former reaches maximum interaction fields.

3. The maximum value of susceptibility in large fields is observed 
at low temperatures.

4. There is a fundamental possibility of experimentally assessing 
the frequency factor when observing the destruction of residual 
magnetization obtained over a sufficiently long time.

The study relied on known experimental data obtained at low 
temperatures, allowing us to simplify some formulas.

Such calculations can be carried out for a system of particles ex-
hibiting superparamagnetic properties at high temperatures. In this 
case, the temperature dependence of spontaneous magnetization, which 
determines critical fields and interaction fields, should be taken into 
account.

In conclusion, this study significantly deepens our understanding 
of superparamagnetism and its manifestations in nanoscale systems. 
Further research in this area will focus on studying the influence 
of various factors, such as particle shape and size, on the magnetic 
properties of nanoscale systems as well as developing new theoretical 
models to describe complex magnetic phenomena.
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