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Superparamagnetism in systems with magnetostatic interaction is evaluated. Equations describing the dynamics
of particle flipping under the influence of a magnetic field are presented, formulas for the relaxation time
and magnetic susceptibility of particles are derived, and the frequency factor is estimated. Experimental data
demonstrating a decrease in the susceptibility peak with increasing field are also discussed.

1. Introduction

In recent decades, there has been significant interest in nanoma-
terials due to their unique physical and chemical properties, making
them suitable for a wide range of applications. Superparamagnetic
nanoparticles are among the most intensively studied nanomaterials.
These particles exhibit unique properties because their anisotropy en-
ergy can be comparable to the energy of thermal fluctuations, allowing
for the reversal of their magnetic moment in a period defined by the
Neel-Brown formula. Consequently, their magnetization dynamics are
significantly dependent on the temperature regime and their particle
size.

Relaxation phenomena in superparamagnetic particles, associated
with processes that occur when the external magnetic field or tem-
perature changes, are under active study. These processes impact the
particles’ response time and magnetic characteristics, which are signif-
icant for their practical applications. Early theoretical descriptions of
magnetic relaxation relied on Langevin approximations, as well as the
works of Kramers and Kolmogorov. A significant contribution to the
development of the theory was made by Shliomis, whose work laid
the foundations for understanding the dynamics of magnetization and
relaxation in systems of superparamagnetic particles. In his seminal
work, “Magnetic Fluids”, Shliomis [1] suggested that the relaxation
of magnetization in superparamagnetic systems is governed by two in-
dependent mechanisms (Néel relaxation and Brownian relaxation); his
hypothesis enabled the explanation of the dynamics of magnetization in
alternating fields and became the basis for interpreting experiments on
the magnetic response of colloids. From the Fokker-Planck equation,
he derived a macroscopic equation of motion for the magnetic moment
of a suspension. Relaxation times were found to be proportional to
the viscosity of the liquid and decreasing functions of the Langevin
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argument. Shliomis’s work also demonstrated that particle anisotropy
critically affects relaxation processes [2].

Kalmykov and Coffey made a significant contribution to the devel-
opment of the theory of magnetic relaxation (see the monograph ‘“Re-
laxation Phenomena in Condensed Matter Physics” [3]). They devel-
oped an improved model for the relaxation time of superparamagnetic
particles, taking into account the influence of external magnetic fields,
anisotropy, and damping. This model allows for a description of the
dynamics of magnetization over a wide range of conditions, accounting
for the influence of dipole-dipole interactions in particle ensembles,
which is particularly important for dense colloids and magnetic fluids.
They proposed analytical solutions for the Langevin and Fokker—Planck
equations, applicable to systems with strong anisotropy [4,5].

Poperechny and Raikher [6] developed a theory of ferromagnetic
resonance (FMR) for superparamagnetic nanoparticles with arbitrary
nonaxial anisotropy. Their approach enabled the interpretation of
experimental data. They demonstrated that multicomponent spectra,
characteristic of highly anisotropic particles in the athermal limit, are
preserved in superparamagnetic particles up to a certain temperature.
They also found that the orientational distribution of the easy mag-
netization axes is not a necessary condition for the appearance of
multi-peak absorption spectra in superparamagnetic systems. In 2023,
Poperechny [7] investigated the linear response of a superparamagnetic
nanoparticle suspended in a liquid in the presence of a stationary bias
field. He confirmed that at zero bias field, the frequency dependence
of the imaginary component of the dynamic susceptibility (absorption
spectrum) features two maxima if the anisotropy energy exceeds the
thermal energy several times. The presence of these peaks results
directly from magnetic nanoparticles’ bistability. He also showed that,
in the presence of a bias field, the spectrum can acquire a third
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maximum if the Brownian rotation of the suspended particle slows
down compared to the establishment of internal magnetic equilibrium
within it.

The works of Eberbeck and Ludwig, who considered stochastic
particle dynamics while accounting for non-Gaussian fluctuations and
colored noise, should also be acknowledged. In particular, they ap-
plied the generalized Fokker—Planck equations to systems with multiple
relaxation time scales. These approaches proved to be especially signifi-
cant when analyzing nonlinear magnetic susceptibility, which is crucial
to the examination of EPR and NMR signals [8,9].

Numerical methods, particularly the Monte Carlo and Langevin
dynamics methods for modeling interacting ensembles, have made
significant progress. The studies by P. Ilg [10-13] and D. Berkov [14—
16] demonstrate the possibility of quantitatively describing magne-
tization dynamics, including hysteresis and nonlinear susceptibility.
The approach used in [17] is based on the Fokker-Planck-Brown
equation. The authors incorporate interparticle interactions and mag-
netic anisotropy to model the dynamic response of superparamagnetic
nanoparticles in an alternating field, illustrating how these factors
affect susceptibility and relaxation time. Kuntscher et al. [18] utilize
micromagnetic modeling, which helps in studying the evolution of
relaxation time in the presence of interparticle interactions, which
is crucial for understanding the hyperthermia of magnetic fluids. Of
particular interest is the study of the blocking temperature of super-
paramagnetic particles, defined as the temperature below which the
particles exhibit collective magnetic behavior with hysteresis. Monte
Carlo simulations of these processes allow for detailed investigations
of the magnetic properties of particles and comparisons of the results
with experimental data, contributing to a deeper understanding of the
physical mechanisms underlying superparamagnetism. In particular,
Gogoi et al. [19] investigated the blocking temperature in the context
of new synthetic approaches for creating superparamagnetic particles.
However, all these approaches require significant computational re-
sources and are generally limited by the number of particles and time
scales.

Recent studies indicate that superparamagnetic particles can be
used for targeted drug delivery, particularly in oncology, as they can
deliver microRNA and other therapeutic agents directly to tumor cells.
For instance, the effects of highly hydrophilic superparamagnetic par-
ticles on macrophage function have been investigated, which is crucial
for understanding their interactions with biological systems [20,21].

Thus, the study of superparamagnetic particles remains a significant
area of modern science, presenting numerous opportunities for further
fundamental and applied research.

The simplest classical method for describing the properties of mag-
netic systems with exchange interaction is the molecular field theory.
However, it cannot fully account for the entire variety of magnetic
ordering types. One approach that expands application possibilities
while retaining the molecular field theory’s simplicity is the method
of random fields of exchange interaction, which has been developed by
many authors. The general approach to determining the distribution
density of random fields was formulated by Chandrasekhar and was
successfully utilized to study the magnetic properties of interacting
particle systems in the works of Anderson, Berkov, Meshkov, and
Shcherbakov [22-24]. In 1992, Belokon [25] proposed applying the
method of random fields of exchange interaction for dilute magnets
with direct exchange. In 2002, Belokon and Nefedev [26] determined
an approximate distribution density of random fields in the form of a
normal distribution. In this case, the mean value and variance were
defined by the law of particle interaction. This could involve either
direct exchange or indirect interaction. The advantage of this approach
over conventional molecular field theory is that it allows for a quantita-
tive description of phase transitions in systems with any exchange law,
takes into account the possibility of diffusion, and enables estimation of
the critical concentration of interacting particles below which a phase
transition is impossible [27-31].
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In this paper, the method is used to describe the behavior of
the magnetic susceptibility of a system of superparamagnetic particles
with magnetostatic interaction at low temperatures. Most previous
works (e.g., Shliomis, Kalmykov, Coffey, and Poperechny) focused
either on relaxation processes considering the dipole-dipole interaction
or on solutions of the Langevin and Fokker-Planck equations. However,
they did not account for the contribution of the exchange interaction
through a stochastic approach, especially with a variable distribution
of anisotropy and size parameters. The proposed model considers the
heterogeneity of the nanoparticle ensemble, particularly the size distri-
bution and anisotropic barriers, which aligns the theory more closely
with real experimental systems.

The article demonstrates that fluctuations in the exchange interac-
tion between particles significantly affect the position of the magnetic
susceptibility peak (blocking temperature) and the shape of the tem-
perature dependence of magnetization. An analytical and numerically
stable description of the temperature evolution of the magnetization
in an ensemble of superparamagnetic particles is proposed, factoring
in the intensity of exchange interactions and their fluctuations. This
approach broadens the applicability of classical models of superparam-
agnetism, such as the Brown, Langevin, or Kalmykov models, to more
complex systems exhibiting collective effects. The article is the first to
describe, within the random fields’ method of exchange interaction,
the transition from independent to collective behavior in ensembles
of superparamagnetic particles with variable intensity of exchange
interaction, both qualitatively and quantitatively.

2. The method of random interaction fields

The method of random interaction fields is a method of molecular
(effective) field, which is considered as a random variable [26]. The
Heisenberg Hamiltonian of a system of interacting particles (ions) has
the form:

H :_Z'IikSiSk_gMBH[ zSi’ @
i<k i

where S; are the components of the spin vector, g is the Lande mul-

tiplier, H is the external magnetic field, and up is the Bohr magne-

ton. Since gupsS; is the magnetic moment of the ion m, the classical

Hamiltonian can be written as follows:

H:—Z]ikmimk—H,zm,-. 2)
i<k i

The summation in the first term is over all pairs of particles. In
the Ising model, the magnetic moment can have only two possible
orientations: +m (up), and —m (down). If we assume the possibility
of replacing exchange interacting particles at some lattice sites with
“frozen-in” “non-magnetic”’ impurities with a density of 1 — p, we
obtain a model with dilution across sites. The term m;J;m; can be
considered as the energy of the magnetic moment m; in the exchange
interaction field H;, = J;,m,. In the molecular field theory (exchange
interaction field), a separate ion is considered m; = m interacting with
the environment. If H = 0, then

H=_Zmizjikmk=_ZmizHik=_zmiHi’ ()]
7 % 7 % 7

where H; = ), J;m, is the total field of exchange interaction on
m;, @, = H;;, the index i omitted.

The dependence of the exchange integral on the distance determines
the number of terms to consider in the sum. This sum is a random
variable, the distribution density of which, in some approximation, as
shown in our studies [25,26], has the form:

2
H - HyM
[H - H, ]}, @

1
WH,M)= exps —
\zB B?

where the average value of (H) = HyM and dispersion of 262> = B>
are expressed in terms of the p concentration of exchange-interacting
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particles, the ¢, effective field of exchange interaction produced by
an atom with number k, and configurationally and thermodynamically
averaged magnetic moment M as follows:

HO=pZ(pk,Bz=2p[l—M2p]Z(pi. (5)
k k

The equation determining the dependence of relative average mag-
netic moment M on temperature and the atomic concentration has the
form:

M= /tanh [%] W (H, M)dH, 6)

where m is the magnetic moment of the ion. W (H, M) is a “smeared”
6 - function.
Then, Eq. (6) will be as follows:

H+ HM
M= 1 /tanh M exp <_i2>d1.1. @
NG kT B?

Simple estimates can be obtained by replacing the Gaussian distri-
bution function with approximate function f(H) :

0, H>B, H<-B
f(H)={ (8

1
ﬁ,—B<H<B.

Examples of the numerical solution of Eq. (7) with exact and approx-
imate functions, from which it follows that near the phase transition
points, where the M values are small, the error in the calculations is
insignificant, are given in [26].

For small M values, in this case, we have that

1 B m(H + HyM)
M=— [ tanh| ———= |)dH. )]
2B/ kT

3. Preisach-Néel diagrams in the study of superparamagnetism

The Preisach-Néel diagram is an important tool for analyzing hys-
teresis phenomena in magnetic materials, including superparamagnetic
particles. The diagram model was developed to describe the behavior
of magnetic domains in ferromagnets but has been adapted to study
superparamagnetism and other magnetic systems, demonstrating the
versatility and power of the diagram in understanding complex mag-
netic phenomena. The Preisach-Néel diagram is based on the concept
that a system of magnetic particles is considered a set of elementary
hysteresis units known as hysterons. Each hysteron is a miniature
magnetic domain that can switch between two stable states under
the influence of an external magnetic field. These states have specific
coercivities and magnetic field variations, which allows the modeling of
the overall magnetic response of the system as the sum of the individual
reactions of all hysterons.

In superparamagnetic systems, blocking temperature plays a key
role because below this temperature, particles start to exhibit collec-
tive magnetic behavior with hysteresis. At the same time, above the
temperature, the particles behave as independent dipoles and hysteresis
disappears. The Preisach-Néel diagram allows modeling of this transi-
tion and an analysis of the changes in hysteresis properties at different
temperatures. The Preisach model is also used for detailed modeling
of the magnetic properties of superparamagnetic particles, including
the effect of the frequency of magnetic field change and the inter-
actions between particles. This modeling is especially important for
optimizing the magnetic properties of nanoparticles used in biomedical
technologies.

Let us consider, in the framework of the Ising model, a system of
ferromagnetic particles of the same volume V distributed over critical
fields of magnetization reversal H, in the interval 0 < H, < D (H, =
KI,, where K is the constant of shape anisotropy, I, is spontaneous
magnetization, and D is the maximum possible critical field). The axes
of the easiest magnetization are oriented in one direction. Further, the
external field acts in the same direction. Moreover, the hysteresis loop
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Fig. 1. Preisach- Néel diagram for magnetic moments of particles in a state of
equilibrium. The coordinates of the particle: « = H, + H,,, and b = H, — H,,,, where
H, is the critical field of magnetization, H,, is the field of magnetostatic interaction,
D is the maximum possible critical field, B is the maximum field of magnetostatic
interaction.
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Fig. 2. Preisach-Néel diagram for magnetic moments of particles in a state of
nonequilibrium. In the upper region above the equilibrium line, particles with a
magnetic moment directed downwards predominate; in the lower region, particles with
a magnetic moment directed upwards predominate. H is the external applied field that
shifts the equilibrium line, D is the maximum possible critical field, B is the maximum
field of magnetostatic interaction.

of the particles is rectangular. The field of magnetostatic interaction
H,, is contained in the interval -B < H,,, < B, where B is of the
order p - I;. The relaxation time for such particles is comparable to
experimental time. It is convenient to depict such a system on the
Preisach-Néel diagram (Fig. 1), where the fields « = H, + H,,, and
b= H, - H,, act as the coordinates of the particle.

In a state of equilibrium on the line a = b the number of magnetic
moments of particles oriented “up” N, and “down” N_ is the same;
but as we move away from this line, the ratio N, to N_ changes.
Furthermore, due to symmetry, the total magnetic moment will be
equal to 0. Turning on a small field H <« B will lead to a shift in the
line of equality N, and N_, and a region responsible for the excess
N, will appear on the diagram N_. This is a region of uncompensated
magnetic moments with a width 2H and a length D (Fig. 2).

Therefore, the initial conditions are

N, +N_=N,, (10)

where N, is the total number of particles. Over a period ¢, the situation

will change to

dN,
dt

=—Ay Ny +ApN_, an
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dN.

——= =—ApN_+ 1y N,, 12)
dt

dN,

220 _, 13)
dt

where 4,, is the probability of the particle’s magnetic moment flipping
from “bottom” to “up”, A,, is the probability of the magnetic moment
of a particle flipping from “top” to “bottom”. The solution to systems
(11) and (12) has the form

A
— 2 N, a4
(A1 + 421)
where % = A5 + 45, and 7 is the relaxation time.

When 7 > 7, the first term becomes 0 and only the expression below
remains:

N+=Aexp[—(/112+121)l]+

~ A

N,=N,= —"2__N,. (15)
* ’ (A12+ 421)
Accordingly, based on formula (10):
A
= #No- (16)
(A12 + 421)

In our model, the average magnetic moment of magnetostatically in-
teracting particles is determined by the difference in the magnetic
moments of particles oriented “up” and “down”:

Ay — Aoy
(A2 +421)
where y is the magnetic moment of the particle y = I, V.

M:y(N+—N_)=/4 a7)

4. Superparamagnetism in a system with magnetostatic interac-
tion

As follows from experimental data [32], at sufficiently low temper-

atures, the magnetic moment increases proportionally to log ¢, where ¢
is the time of action of the constant field H. The ensemble of particles
should have a wide spectrum of relaxation times, which is due to
their spread over the volume and magnetization reversal fields H..
The probability of fluctuation is determined by the minimum work R
required to overcome the potential barrier:
A= foexp [_kAT] . (18)
Here, f, is the frequency factor, and k is the Boltzmann constant. In
the absence of an external field, the critical value of the magnetization
reversal field is % The external field H and the interaction field H,,,
either help or hinder the reversal of the magnetic moment, contributing
to the work R. When the magnetostatic interaction field H,,, and the
field H are oriented “up”, they help the particle overcome the barrier
%, but hinder its reversal ”down”. In this case, the relaxation time
7, the magnetic moment of the particles, and its critical field will be
related by the relation:

1
o= Aip + a1, 19
Ay = foexp -2 i—(H +H) (20)
12 0 kT 2 int ’
Ay = foexp -2 £+(H~ +H) @1
21 0 kT 2 int .
From expressions (19)-(21), it follows that
H H;,,+H

2 exp _E%e |5 cosh M . (22)
for 2kT kT

Critical fields of particles for which equilibrium has been established
(precisely, r = = and ¢ is the time of action of field H) are:

H, = 2kTT (ln [fot] +In |:2COSh [%] ] ) (23)
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Fig. 3. Graphs of the dependence of the magnetic susceptibility of the y(T') AuFe alloy
with an iron concentration of 8% at field values H = 10 Oe (black line), H = 100 Oe
(red line), experimental data [33] (blue line).

Expression (23) allows us to find the transition temperature of all par-
ticles to the superparamagnetism state depending on H,,, and H, when
the maximum field H, = D. As a well-known example of the behavior
of such particles, we consider an AuFe alloy with an iron concentra-
tion of 8%; the experimental data and graphs of the initial magnetic
susceptibility’s dependence on temperature are described in [33]. At
low temperatures, the behavior of this alloy’s magnetic moment and
spontaneous magnetization are independent of temperature. According
to the theory of random interaction fields, at a temperature below the
critical temperature, the leaky cluster is destroyed, and a system of
finite-sized clusters consisting of iron ions is formed. The spontaneous
magnetization of iron I, = 1700 erg - G~ - cm™3 [34]. The relaxation
time for such clusters will be determined by the shape and number
of particles. The average field of magnetostatic interaction is on the
order of pI, = 0.08 - 1700 = B = 1360 Oe. For an iron particle, the
average magnetization reversal field is on the order of 1700 Oe since
the shape anisotropy constant is on the order of unity (H, = KI, =
1-1700 = 1700 Oe). However, for small particles, for which the number
of surface ions is relatively large, the critical magnetization reversal
field is significantly smaller [35]. The experimental point of maximum
magnetic susceptibility given in [33] was taken as a guideline when
choosing the critical field D = 800 Oe. The magnetic moment u was
found from the relation 2L In [t -10'3 .2 - cosh [%H = D + B because,
at this point, all the parti,éles have passed into the superparamagnetic
state. The Boltzmann constant k = 1.38 - 10~'%rg - K~!. There are
various opinions in the literature regarding the frequency factor; in
this paper, we associate it with the Debye temperature, which, for
example, for gold or iron is of the order of 10> K. The probability of an
irreversible rotation of the magnetic moment of a cluster is determined
by the "frequency of fluctuation attempts”, which is associated with
elastic oscillations of ions in the crystal lattice. By definition, the Debye
frequency is the maximum possible frequency of the phonon spectrum.
Therefore, we associate the frequency factor with the Debye frequency.
Accordingly, from the expression, hwp = kTp, the estimate wp ~ f
is of the order of 103s~!. If we set H,, = 0 and H = 0, then,
based on formula (23), the temperature of the transition of particles
to the superparamagnetic state is T ~ 30 K, which corresponds to the
experimental value obtained in the literature [33] and presented in
(Fig. 3).

The average magnetic moment of magnetostatically interacting par-
ticles M, per particle for a given H,, can be found from formulas
(17)-(21):

M= MM = ptanh

24
(A12 + 421)

[M(Hint+H):|.

kT
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The number of particles in the Preisach-Néel diagram from fields
dH, dH,, is determined from the relationship

N,
dN=—dH dH,, 25
2BD (25)

In the framework of the random interaction field method, the total
magnetic moment of a system of particles at time 7 is defined as

N, H,+H H,+H
#No [P2kT [”( —— )]m [Zfotcosh [MHde,.

Mv=38D kT
(26)

At a fixed time ¢, the dependence of susceptibility y to temperatureT
can be considered as oM /0H, taking into account that in this tem-
perature range, I (T) = I,(0). Fig. 3 shows graphs of the dependence
of the magnetic susceptibility of the y(7T') AuFe alloy with an iron
concentration of 8% at field values H = 10 Oe (black line), H = 100 Oe
(blue line). The experimental graph corresponds to the graph obtained
as a result of the calculation at H = 10 Oe. At temperatures of up
to 30 K, particles acquire a magnetic moment in the direction of the
applied field; and the process extends to the maximum value H,. It
is apparent that after reaching the temperature at which all particles
pass into the superparamagnetic state, further change in susceptibility
is reduced due to the randomization of the directions of the magnetic
moments of the particles due to an increase in temperature. If the field
is turned on, then an increase in the field will cause a fall in the peak
of susceptibility, correlating with the experimental data for the AuFe
alloy with an iron concentration of 2% (see Figure in [33]). For clarity
of comparison with experimental data, it is convenient to choose the
total number of particles Ny, =2 - 103,

As shown in formula (26), the time required to reach the superpara-
magnetic state 2f, cosh | £ Hiwt 1) 14 depends on the fields H;,, and H.
Therefore, at H > B this time decreases, which leads to reaching the
maximum value of the magnetic moment at a low temperature.

5. Estimation of the magnitude of the frequency factor

The formulas obtained allow us to estimate the magnitude of the fre-
quency factor. Let the magnetization of the particle system be obtained
over a long period #, at a temperature T and with the field turned on:

2kT
H, = ==1n[2fyt,]. 27)
Magnetlzatlon is destroyed by the temperature T during the same
period. If heating is carried out instantaneously from temperature f,
to T + AT, then, from the formula, it will follow that

H, _Ml /o] 28)

The time of destruction of magnetization ¢, will be short, that is, the
destruction process will be accelerated. Solving Egs. (27) and (28)
together, we obtain the expression

i AT
In [f] = = In [2foto] (29)

Formula (29) allows us to find the frequency factor f, for known values
tg,t;,T, and AT.

Because the heating process takes a certain duration, the time
interval ¢, for the formation of magnetization must be large enough so
that the transition to the decay curve is completed during the process
of magnetization destruction at T + AT.

6. Conclusion
This study was conducted within the framework of a simple super-

paramagnetism model in systems with magnetostatic interaction. It has
been established that:
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1. The simple model evaluated allows one to accurately describe
the behavior of the magnetic susceptibility of a system of su-
perparamagnetic particles with magnetostatic interaction at low
temperatures.

2. Magnetic susceptibility significantly depends on an external field
when the former reaches maximum interaction fields.

3. The maximum value of susceptibility in large fields is observed
at low temperatures.

4. There is a fundamental possibility of experimentally assessing
the frequency factor when observing the destruction of residual
magnetization obtained over a sufficiently long time.

The study relied on known experimental data obtained at low
temperatures, allowing us to simplify some formulas.

Such calculations can be carried out for a system of particles ex-
hibiting superparamagnetic properties at high temperatures. In this
case, the temperature dependence of spontaneous magnetization, which
determines critical fields and interaction fields, should be taken into
account.

In conclusion, this study significantly deepens our understanding
of superparamagnetism and its manifestations in nanoscale systems.
Further research in this area will focus on studying the influence
of various factors, such as particle shape and size, on the magnetic
properties of nanoscale systems as well as developing new theoretical
models to describe complex magnetic phenomena.
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